Skip to main content
Log in

Mass Spectra of New Heterocycles: XXII. Electron Impact and Chemical Ionization of 1-Alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl)sulfanyl]-1H-pyrrol-2-amines

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Fragmentation of 1-alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl)sulfanyl]-1H-pyrrol-2-amines under electron impact (70 eV) and chemical ionization (with methane as reactant gas) has been studied for the first time. All the examined compounds under electron impact generated the molecular ion [M]+· (Irel 5–90%) whose primary fragmentation involved mainly cleavage of the C–S bond in the SR4 substituent with elimination of R4 radical (except for 1-isopropyl- and 1-cycloalkyl-1H-pyrrol-2-amines). The main pathway of the decomposition of 1-isopropyl(cycloalkyl)-N,N-dimethyl-5-[(methyl, allyl)sulfanyl]-1H-pyrrol-2-amines was cleavage of the C–N bond with both elimination of the R1 radical from the pyrrole nitrogen atom and fragmentation of the pyrrole ring through elimination of imine (or aziridine) molecule and formation of odd-electron [M – NR1]+· radical cation. Chemical ionization of the title compounds involved protonation, charge exchange, and electrophilic addition processes and elimination of Me (Et) and SMe (SEt) radicals from the [M + H]+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2020, vol. 56, p. 768. https://doi.org/10.1134/S1070428020050073

    Article  CAS  Google Scholar 

  2. Walsh, C.T., Garneau-Tsodikova, S., and HowardJones, A.R., Nat. Prod. Rep., 2006, vol. 23, p. 517. https://doi.org/10.1039/b605245m

    Article  CAS  PubMed  Google Scholar 

  3. Bellina, F. and Rossi, R., Tetrahedron, 2006, vol. 62, p. 7213. https://doi.org/10.1016/j.tet.2006.05.024

    Article  CAS  Google Scholar 

  4. Forte, B., Malgesini, B., Piutti, C., Quartieri, F., Scolaro, A., and Papeo, G., Mar. Drugs, 2009, vol. 7, p. 705. https://doi.org/10.3390/md7040705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Russel, J.S., Pelkey, E.T., and Yoon-Miller, S.J.P., Prog. Heterocycl. Chem., 2011, vol. 22, p. 143. https://doi.org/10.1016/S0959-6380(11)22006-3

    Article  CAS  Google Scholar 

  6. Ferreira, V.F., de Souza, M.C.B.V., Cunha, A.C., Pereira, L.O.R., and Ferreira, M.L.G., Org. Prep. Proced. Int., 2001, vol. 33, p. 411. https://doi.org/10.1080/00304940109356613

    Article  CAS  Google Scholar 

  7. Nosova, E.V., Poteeva, A.D., Lipunova, G.N., Slepu­khin, P.A., and Charushin, V.N., Russ. J. Org. Chem., 2019, vol. 55, p. 384. https://doi.org/10.1134/S0514749219030200

    Article  CAS  Google Scholar 

  8. Arabpourian, K. and Behbahani, F.K., Russ. J. Org. Chem., 2019, vol. 55, p. 682. https://doi.org/10.1134/S0514749219050240

    Article  CAS  Google Scholar 

  9. Rostami, H. and Shiri, L., Russ. J. Org. Chem., 2019, vol. 55, p. 1204. https://doi.org/10.1134/S0514749219080251

    Article  CAS  Google Scholar 

  10. Khafizova, L.O., Shaibakova, M.G., Richter, N.A., and Dzhemilev, U.M., Russ. J. Org. Chem., 2020, vol. 56, p. 218. https://doi.org/10.1134/S1070428020020074

    Article  CAS  Google Scholar 

  11. Abele, E., Abele, R., and Lukevics, E., Chem. Heterocycl. Compd., 2004, vol. 40, p. 1. https://doi.org/10.1023/B:COHC.0000023761.76443.34

    Article  CAS  Google Scholar 

  12. Joshi, S.D., More, U.A., Kulkarni, V.H., and Amina­bhavi, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. https://doi.org/10.2174/13852728113179990040

    Article  CAS  Google Scholar 

  13. Estévez, V., Villacampa, M., and Menéndez, J.C., Chem. Soc. Rev., 2010, vol. 39, p. 4402. https://doi.org/10.1039/b917644f

    Article  CAS  PubMed  Google Scholar 

  14. Patil, N.T. and Yamamoto, Y., Arkivoc, 2007, vol. 2007, part (x), p. 121. https://doi.org/10.3998/ark.5550190.0008.a11

    Article  Google Scholar 

  15. Leeper, F.J. and Kelly, J.M., Org. Prep. Proced. Int., 2013, vol. 45, p. 171. https://doi.org/10.1080/00304948.2013.786590

    Article  CAS  Google Scholar 

  16. Muzalevskiy, V.M., Shastin, A.V., Balenkova, E.S., Haufe, G., and Nenajdenko, V.G., Synthesis, 2009, vol. 2009, p. 3905. https://doi.org/10.1055/s-0029-1217080

    Article  CAS  Google Scholar 

  17. Saracoglu, N., Top. Heterocycl. Chem., 2007, vol. 11, p. 1. https://doi.org/10.1007/7081_2007_073

    Article  CAS  Google Scholar 

  18. Khajuria, R., Dham, S., and Kapoor, K.K., RSC Adv., 2016, vol. 6, p. 37039. https://doi.org/10.1039/c6ra03411j

    Article  CAS  Google Scholar 

  19. Lion, D.C., Baudry, R., Hedayatullah, M., Da Con­ceiçlato, L., Genard, S., and Maignan, J., J. Heterocycl. Chem., 2002, vol. 39, p. 125. https://doi.org/10.1002/jhet.5570390118

    Article  CAS  Google Scholar 

  20. Kozekov, I.D., Koleva, R.I., and Palamareva, M.D., J. Heterocycl. Chem., 2002, vol. 39, p. 229. https://doi.org/10.1002/jhet.5570390134

    Article  CAS  Google Scholar 

  21. de Dios, A., de la Puente, M.L., Rivera-Sagredo, A., and Espinosa, J.F., Can. J. Chem., 2002, vol. 80, p. 1302. https://doi.org/10.1139/v02-175

    Article  CAS  Google Scholar 

  22. Kalinin, A.A. and Mamedov, V.A., Chem. Heterocycl. Compd., 2011, vol. 46, p. 1423. https://doi.org/10.1007/s10593-011-0688-1

    Article  CAS  Google Scholar 

  23. Cravotto, G., Tagliapietra, S., Caporaso, M., Garella, D., Borretto, E., and Di Stilo, A., Chem. Heterocycl. Compd., 2013, vol. 49, p. 811. https://doi.org/10.1007/s10593-013-1317-y

    Article  CAS  Google Scholar 

  24. Montalbano, A., Parrino, B., Diana, P., Barraja, P., Carbone, A., Spanò, V., and Cirrincione, G., Tetrahedron, 2013, vol. 69, p. 2550. https://doi.org/10.1016/j.tet.2013.01.076

    Article  CAS  Google Scholar 

  25. Xiao, X.-Y., Zhou, A.-H., Shu, C., Pan, F., Li, T., and Ye, L.-W., Chem. Asian J., 2015, vol. 10, p. 1854. https://doi.org/10.1002/asia.201500447

    Article  CAS  PubMed  Google Scholar 

  26. Zeng, Z., Jin, H., Rudolph, M., Rominger, F., and Hashmi, A.S.K., Angew. Chem., Int. Ed., 2018, vol. 57, p. 16549. https://doi.org/10.1002/anie.201810369

    Article  CAS  Google Scholar 

  27. Gillis, H.M., Greene, L., and Thompson, A., Synlett, 2009, vol. 2009, p. 112. https://doi.org/10.1055/s-0028-1087486

    Article  CAS  Google Scholar 

  28. Misra, N.C., Panda, K., Ila, H., and Junjappa, H., J. Org. Chem., 2007, vol. 72, p. 1246. https://doi.org/10.1021/jo062139j

    Article  CAS  PubMed  Google Scholar 

  29. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S., and Sharma, P., RSC Adv., 2015, vol. 5, p. 15233. https://doi.org/10.1039/C4RA15710A

    Article  CAS  Google Scholar 

  30. Nedolya, N.A., PhD Thesis, Utrecht University, The Netherlands, 1999.

  31. Brandsma, L. and Nedolya, N.A., Synthesis, 2004, vol. 2004, p. 735. https://doi.org/10.1055/s-2004-816005

    Article  CAS  Google Scholar 

  32. Tarasova, O.A., Nedolya, N.A., Vvedensky, V.Yu., Brandsma, L., and Trofimov, B.A., Tetrahedron Lett., 1997, vol. 38, p. 7241. https://doi.org/10.1016/S0040-4039(97)01680-8

    Article  CAS  Google Scholar 

  33. Brandsma, L., Nedolya, N.A., and Trofimov, B.A., Eur. J. Org. Chem., 1999, vol. 1999, p. 2663. https://doi.org/10.1002/(SICI)1099-0690(199910)

    Article  Google Scholar 

  34. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Tetrahedron Lett., 2010, vol. 51, p. 5316. https://doi.org/10.1016/j.tetlet.2010.07.179

    Article  CAS  Google Scholar 

  35. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofimov, B.A., Synthesis, 2019, vol. 51, p. 3697. https://doi.org/10.1055/s-0037-1611883

    Article  CAS  Google Scholar 

  36. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofimov, B.A., ChemistrySelect, 2020, vol. 5, p. 5726. https://doi.org/10.1002/slct.202000577

    Article  CAS  Google Scholar 

  37. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2013, vol. 49, p. 384. https://doi.org/10.1134/S1070428013030123

    Article  CAS  Google Scholar 

  38. Klyba, L.V., Nedolya, N.A., Tarasova, O.A., and Sanzheeva, E.R., Russ. J. Org. Chem., 2014, vol. 50, p. 35. https://doi.org/10.1134/S1070428014010072

    Article  CAS  Google Scholar 

  39. Klyba, L.V., Nedolya, N.A. Sanzheeva, E.R., Taraso­va, O.A., and Shagun, V.A., Russ. J. Org. Chem., 2019, vol. 55, p. 1853. https://doi.org/10.1134/S1070428019120078

    Article  CAS  Google Scholar 

  40. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2019, vol. 55, p. 824. https://doi.org/10.1134/S1070428019060125

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the Baikal joint analytical center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Klyba.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 3, pp. 363–372 https://doi.org/10.31857/S0514749221030046.

For communication XXI, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R. et al. Mass Spectra of New Heterocycles: XXII. Electron Impact and Chemical Ionization of 1-Alkyl(cycloalkyl, alkoxyalkyl)-5-[(alkyl, allyl, benzyl)sulfanyl]-1H-pyrrol-2-amines. Russ J Org Chem 57, 347–354 (2021). https://doi.org/10.1134/S1070428021030040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021030040

Keywords:

Navigation