Skip to main content
Log in

Mechanism of Hydrolysis of 1,1,1-Trisubstituted Hyposilatranes and Hypogermatranes

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

According to DFT calculations, hydrolysis of 1,1,1-trisubstituted hyposilatranes and hypogermatranes proceed in one stage and have lower activation energies than hydrolysis of the corresponding atranes and ocanes, and, unlike what is observed with the tricyclic and bicyclic analogs, the former reactions are characterized by positive Gibbs energies. The configuration of the hydrolysis products is stabilized by the transannular interactions N→X and O→X (X = Si, Ge) and intramolecular hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voronkov, M.G. and Baryshok, V.P., Pharm. Chem. J., 2004, vol.38, p.3. doi https://doi.org/10.1023/B:PHAC.0000027635.41154.0d

    Article  CAS  Google Scholar 

  2. Voronkov, M.G. and Baryshok, V.P., Herald Russ. Acad. Sci., 2010, vol.80, p.514. doi https://doi.org/10.1134/S1019331610060079

    Article  Google Scholar 

  3. Menchikov, L.G. and Ignatenko, M.A., Pharm. Chem. J., 2013, vol.46, p.635. doi https://doi.org/10.1007/s11094-013-0860-2

    Article  CAS  Google Scholar 

  4. Studentsov, E.P., Ramsh, S.M., Kazurova, N.G., Neporozhneva, O.V., Garabadzhiu, A.V., Kochina, T.A., Voronkov, M.G., Kuznetsov, V.A., and Krivorotov, D.V., Obzory Klin. Farm. Lekarst. Ter., 2013, vol.11, p.3.

    Article  Google Scholar 

  5. Milov, A.A., Minyaev, R.M., and Minkin, V.I., Russ. J. Org. Chem., 2003, vol.39, p.340. doi https://doi.org/10.1023/A:1025581412378

    Article  CAS  Google Scholar 

  6. Milov, A.A., Vestn. Yuzh. Nauch. Tsentra RAN, 2011, vol.7, p.37.

    Google Scholar 

  7. Feshin, V.P. and Feshina, E.V., Russ. J. Gen. Chem., 2014, vol.84, p.70. doi https://doi.org/10.1134/S1070363214010101

    Article  CAS  Google Scholar 

  8. Chernyshev, E.A., Knyazev, S.P., Kirin, V.N., Vasilev, I.M., and Alekseev, N.V., Russ. J. Gen. Chem., 2004, vol.74, p.58. doi https://doi.org/10.1023/B:RUGC.0000025170.06493.f9

    Article  CAS  Google Scholar 

  9. Zabalov, M.V., Karlov, S.S., Zaitseva, G.S., and Lemenovskii, D.A., Russ. Chem. Bull., 2006, vol.55, p.464. doi https://doi.org/10.1007/s11172-006-0279-y

    Article  CAS  Google Scholar 

  10. Korlyukov, A.A., Russ. Chem. Rev., 2015, vol.84, p.422. doi https://doi.org/10.1070/RCR4466

    Article  CAS  Google Scholar 

  11. Marín-Luna, M., Alkorta, I., and Elguero, J., J. Organomet. Chem., 2015, vol.794, p.206. doi https://doi.org/10.1016/j.jorganchem.2015.07.013

    Article  CAS  Google Scholar 

  12. Voronkov, M.G., Korlyukov, A.A., Zelbst, E.A., Grebneva, E.A., Trofimova, O.M., and Antipin, M.Yu., Doklady Chem., 2008, vol.418, p.27. doi https://doi.org/10.1134/S0012500808020018

    Article  CAS  Google Scholar 

  13. Ignat’ev, I.S., Voronkov, M.G., Kochina, T.A., and Vrazhnov, D.V., Russ. J. Gen. Chem., 2010, vol.80, p.2274. doi https://doi.org/10.1134/S1070363210110083

    Article  CAS  Google Scholar 

  14. Alekseev, N.V. and Chernyshev, E.A., J. Struct. Chem., 2010, vol.51, p.419. doi https://doi.org/10.1007/s10947-010-0063-6

    Article  CAS  Google Scholar 

  15. Voronkov, M.G., Korlyukov, A.A., Samokhin, G.S., Vrazhnov, D.V., and Kochina, T.A., Russ. Chem. Bull., 2012, vol.61, p.992. doi https://doi.org/10.1007/s11172-012-0128-0

    Article  CAS  Google Scholar 

  16. Vereshchagina, Ya.A., Alimova, A.Z., Chachkov, D.V., Ishmaeva, E.A., Kochina, T.A., and Voronkov, M.G., Russ. J. Org. Chem., 2014, vol.50, p.1225. doi https://doi.org/10.1134/S1070428014080314

    Article  CAS  Google Scholar 

  17. Vereshchagina, Ya.A., Alimova, A.Z., Chachkov, D.V., Ishmaeva, E.A., and Kochina, T.A., Russ. J. Org. Chem., 2015, vol.51, p.750. doi https://doi.org/10.1134/S1070428015050310

    Article  CAS  Google Scholar 

  18. Samokhin, G.S., Vrazhnov, D.V., Kochina, T.A., and Voronkov, M.G., Glass Phys. Chem., 2010, vol.36, p.623. doi https://doi.org/10.1134/S1087659610050123

    Article  CAS  Google Scholar 

  19. Samokhin, G.S., Candidate Sci. (Chem.) Dissertation, St. Petersburg, 2011.

    Google Scholar 

  20. Voronkov, M.G., Samokhin, G.S., Vrazhnov, D.V., and Kochina, T.A., Russ. J. Gen. Chem., 2012, vol.82, p.170. doi https://doi.org/10.1134/S1070363212010288

    Article  CAS  Google Scholar 

  21. Vereshchagina, Ya.A., Chachkov, D.V., Alimova A.Z., and Ishmaeva, E.A., Phosph., Sulfur Silicon Relat. Elem., 2016, vol.191, p.496. doi https://doi.org/10.1080/10426507.2015.1114486

    Article  CAS  Google Scholar 

  22. Ignatyev, I.S., Montejo, M., Rodriguez Ortega, P.G, Kochina, T.A., and González, J.J.L., J Mol Model., 2016, vol.22, p.3. doi https://doi.org/10.1007/s00894-015-2880-1

    Article  CAS  PubMed  Google Scholar 

  23. Vereshchagina, Ya.A., Chachkov, D.V., Ismagilova, R.R., and Vedeneeva, E.A., Russ. J. Org. Chem., 2018, vol.54, p.118. doi https://doi.org/10.1134/S1070428018030181

    Article  Google Scholar 

  24. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morkuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Inc., Wallingford CT, 2009.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Vereshchagina.

Additional information

Russian Text © Ya.A. Vereshchagina, R.R. Ismagilova, D.V. Chachkov, 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 2, pp. 279–286.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vereshchagina, Y.A., Ismagilova, R.R. & Chachkov, D.V. Mechanism of Hydrolysis of 1,1,1-Trisubstituted Hyposilatranes and Hypogermatranes. Russ J Org Chem 55, 227–233 (2019). https://doi.org/10.1134/S1070428019020143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019020143

Keywords

Navigation