Skip to main content

Advertisement

Log in

Applications of Norrish type I and II reactions in the total synthesis of natural products: a review

  • Reviews
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Natural products and their analogue have played a key role in the drug discovery and development process. In the laboratory, the total synthesis of secondary metabolites is very useful in ascertaining the hypothetical complex structure of molecules of natural origin. Total synthesis of natural products using Norrish type I and II reactions as a crucial step has been explored in this overview. Norrish reactions are important photo-induced transformations of carbonyl compounds in organic synthetic chemistry and are connected in numerous industrially and biologically relevant procedures and the processing of carbonyl compounds in the atmosphere. The present review tries to focus on the brilliant applications of Norrish type I and II photochemical reactions as a key step in the total synthesis of natural products and highlights on natural sources, structures, and biological activities of the promising natural products for the first time elegantly.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16

Similar content being viewed by others

References

  1. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature, 20, 200–216.

    CAS  Google Scholar 

  2. Mishra, B. B., & Tiwari, V. K. (2011). Natural products: An evolving role in future drug discovery. European Journal of Medicinal Chemistry, 46, 4769–4807.

    Article  CAS  PubMed  Google Scholar 

  3. Harvey, A. L., Edrada- Ebel, R., & Quinn, R. J. (2015). The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery, 14, 111–129.

    Article  CAS  PubMed  Google Scholar 

  4. Tintore, M., Vidal- Jordana, A., & Sastre- Garriga, J. (2019). Treatment of multiple sclerosis—success from bench to bedside. Nature Reviews Neurology, 15, 53–58.

    Article  CAS  PubMed  Google Scholar 

  5. Newman, D. J., & Cragg, G. M. (2016). Natural Products as Sources of New Drugs from 1981 to 2014. Journal of Natural Products, 79, 629–661.

    Article  CAS  PubMed  Google Scholar 

  6. Barnes, E. C., Kumar, R., & Davis, R. A. (2016). The use of isolated natural products as scaffolds for the generation of chemically diverse screening libraries for drug discovery. Natural Products Reports, 33, 372–381.

    Article  CAS  Google Scholar 

  7. Lawson, A. D. G., MacCoss, M., & Heer, J. P. (2018). Importance of rigidity in designing small molecule drugs to tackle protein-protein interactions (PPIs) through stabilization of desired conformers. Journal of Medicinal Chemistry, 61, 4283–4289.

    Article  CAS  PubMed  Google Scholar 

  8. Nicolaou, K. C., & Rigol, S. (2020). Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Natural Products Reports, 37, 1404–1435.

    Article  CAS  Google Scholar 

  9. Li, L., Chen, Z., Zhang, X., & Jia, Y. (2018). Divergent strategy in natural product total synthesis. Chemical Reviews, 118, 3752–3832.

    Article  CAS  PubMed  Google Scholar 

  10. Majhi, S. (2020). Diterpenoids: Natural Distribution, Semisynthesis at Room Temperature and Pharmacological Aspects-A Decade Update. ChemistrySelect, 5, 12450–12464.

    Article  CAS  Google Scholar 

  11. Majhi, S., & Das, D. (2021). Chemical derivatization of natural products: Semisynthesis and pharmacological aspects—a decade update. Tetrahedron, 78, 131801.

    Article  CAS  Google Scholar 

  12. Majhi, S. (2021). The art of total synthesis of bioactive natural products via microwaves. Current Organic Chemistry, 25, 1047–1069.

    Article  CAS  Google Scholar 

  13. Majhi, S. (2021). Applications of Yamaguchi method to esterification and macrolactonization in total synthesis of bioactive natural products. ChemistrySelect, 6, 4178–4206.

    Article  CAS  Google Scholar 

  14. Majhi, S. (2021). Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrasonics Sonochemistry, 77, 105665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Albini, A. (2021). Norrish’ type I and II reactions and their role in the building of photochemical science. Photochemical & Photobiological Sciences, 20, 161–181.

    Article  CAS  Google Scholar 

  16. Marchetti, B., Karsili, T. N. V., & Ashfold, M. N. R. (2019). Exploring Norrish type I and type II reactions: An ab initio mechanistic study highlighting singlet-state mediated chemistry. Physical Chemistry Chemical Physics: PCCP, 21, 14418–14428.

    Article  CAS  PubMed  Google Scholar 

  17. Sivaguru, P., Wang, Z., Zanoni, G., & Bi, X. (2019). Cleavage of carbon–carbon bonds by radical reactions. Chemical Society Reviews, 48, 2615–2656.

    Article  CAS  PubMed  Google Scholar 

  18. Karkas, M. D., Porco, J. A., Jr., & Stephenson, C. R. J. (2016). Photochemical approaches to complex chemotypes: Applications in natural product synthesis. Chemical Reviews, 116, 9683–9747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bach, T., & Hehn, J. P. (2011). Photochemical reactions as key steps in natural product synthesis. Angewandte Chemie International Edition, 50, 1000–1045.

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann, N. (2008). Photochemical reactions as key steps in organic synthesis. Chemical Reviews, 108, 1052–1103.

    Article  CAS  PubMed  Google Scholar 

  21. Schapiro, I., Melaccio, F., Laricheva, E. N., & Olivucci, M. (2011). Using the computer to understand the chemistry of conical intersections. Photochemical & Photobiological Sciences, 10, 867–886.

    Article  CAS  Google Scholar 

  22. Olivucci, M., & Santoro, F. (2008). Chemical selectivity through control of excited-state dynamics. Angewandte Chemie International Edition, 47, 6322–6325.

    Article  CAS  PubMed  Google Scholar 

  23. Norrish, R. G. W., & Bamford, C. H. (1936). Photodecomposition of aldehydes and ketones. Nature, 138, 1016.

    Article  CAS  Google Scholar 

  24. Norrish, R. G. W., & Kirkbride, F. W. (1932). Primary photochemical processes. Part I. The decomposition of formaldehyde. Journal of Chemistry Society, 1982, 1518–1530.

    Article  Google Scholar 

  25. Reddy, G. D., Usha, G., Ramanathan, K. V., & Ramamurthy, V. (1986). Modification of photochemistry by cyclodextrin complexation. Competitive Norrish type I and type II reactions of benzoin alkyl ethers. Journal of Organic Chemistry, 51, 3085–3093.

    Article  CAS  Google Scholar 

  26. Johnston, L. J., & Scaiano, J. C. (1987). One- and two-photon processes in the photochemistry of 1.3-bis(1-naphthyl)-2-propanone: An example of a “reluctant” Norrish type I reaction. Journal of the American Chemical Society, 109, 5487–5491.

    Article  CAS  Google Scholar 

  27. Yamashita, H., Takada, S., Hada, M., Nakatsuji, H., & Anpo, M. (2003). Experimental study and ab initio molecular orbital calculation on the photolysis of n-butyrophenone included within the alkali metal cation-exchanged ZSM-5 zeolite. Journal of Photochemistry and Photobiology, A: Chemistry, 160, 37–42.

    Article  CAS  Google Scholar 

  28. Kang, T., & Scheffer, J. R. (2001). An unexpected Paternò-Buchi reaction in the crystalline state. Organic Letters, 3, 3361–3364.

    Article  CAS  PubMed  Google Scholar 

  29. Corbin, D. R., Eaton, D. F., & Ramamurthy, V. (1988). Modification of photochemical reactivity by zeolites: Norrish type I and type II reactions of benzoin derivatives. Journal of the American Chemical Society, 110, 4848–4849.

    Article  CAS  Google Scholar 

  30. Ramamurthy, V., Lei, X.-G., Turro, N. J., Lewis, T. J., & Scheffer, J. R. (1991). Photochemistry of macrocyclic ketones within zeolites: Competition between norrish type I and type II reactivity. Tetrahedron Letters, 32, 7675–7678.

    Article  CAS  Google Scholar 

  31. Kanaoka, Y., Okajima, H., & Hatanaka, Y. (1979). Photoinduced reactions. 39. Photochemistry of the imide system. 9. Norrish type I reaction of aliphatic cyclic imides. General reaction pattern, competition with type II processes, and some synthetic application. Journal of Organic Chemistry, 44, 1749–1751.

    Article  CAS  Google Scholar 

  32. Adam, W., Arnold, M. A., Nau, W. M., Pischel, U., & Saha-Moller, C. R. (2002). A comparative photomechanistic study (spin trapping, EPR spectroscopy, transient kinetics, photoproducts) of nucleoside oxidation (dG and 8-oxodG) by triplet-excited acetophenones and by the radicals generated from α-oxy-substituted derivatives through Norrish-Type I cleavage. Journal of the American Chemical Society, 124, 3893–3904.

    Article  CAS  PubMed  Google Scholar 

  33. Weiss, D. S. (1981). The Norrish type I reaction in cycloalkanone photochemistry. Organic Photochemistry, 5, 347–420.

    CAS  Google Scholar 

  34. Norrish, R. G. W., & Appleyard, M. E. S. (1934). Primary photochemical reactions. Part IV. Decomposition of methyl ethyl ketone and methyl butyl ketone. Journal of Chemical Society, 1934, 874–880.

    Article  Google Scholar 

  35. Stark, M., & Thiem, J. (2006). Highly functionalized glyco-conjugated hexahydroazepindiones from saccharide imides via the Norrish type II reaction. Carbohydrate Research, 341, 1543–1556.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, N. C., & Yang, D. H. (1958). Photochemical reactions of ketones in solution. Journal of the American Chemical Society, 80, 2913–2914.

    Article  CAS  Google Scholar 

  37. Kell, A. J., & Workentin, M. S. (2001). Aryl ketone photochemistry on monolayer protected clusters: Study of the Norrish Type II reaction as a probe of conformational mobility and for selective surface modification. Langmuir, 17, 7355–7363.

    Article  CAS  Google Scholar 

  38. Zimmt, M. B., Doubleday, C., & Turro, N. J. (1987). Substituent and solvent effects on the lifetimes of hydrocarbon-based biradicals. Chemical Physics Letters, 134, 549–552.

    Article  CAS  Google Scholar 

  39. Morita, A., & Kato, S. (1993). Theoretical study on the intersystem crossing mechanism of a diradical in Norrish type II reactions in solution. Journal of Physical Chemistry, 97, 3298–3313.

    Article  CAS  Google Scholar 

  40. Ramamurthy, V., Corbin, D. R., & Johnston, L. J. (1992). A study of Norrish type II reactions of aryl alkyl ketones included within zeolites. Journal of the American Chemical Society, 114, 3870–3882.

    Article  CAS  Google Scholar 

  41. Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, S122–S129.

    Article  CAS  PubMed  Google Scholar 

  42. Chopra, R., Alderborn, G., Podczeck, F., & Newton, J. M. (2002). The influence of pellet shape and surface properties on the drug release from uncoated and coated pellets. International Journal of Pharmaceutics, 239, 171–178.

    Article  CAS  PubMed  Google Scholar 

  43. Yoshio, A., Daisuke, T., Ryota, S., Ken, O., & Keisuke, S. (2019). Stereochemical dichotomy in two competing cascade processes: Total syntheses of both enantiomers of spiroxin A. Angewandte Chemie International Edition, 58, 12507–12513.

    Article  Google Scholar 

  44. McDonald, L. A., Abbanat, D. R., Barbieri, L. R., Bernan, V. S., Discafani, C. M., Greenstein, M., Janota, K., Korshalla, J. D., Lassota, P., Tischler, M., & Carter, G. T. (1999). Spiroxins, DNA cleaving antitumor antibiotics from a marine-derived fungus. Tetrahedron Letters, 40, 2489–2492.

    Article  CAS  Google Scholar 

  45. Wang, T., Shirota, O., Nakanishi, K., Berova, N., McDonald, L. A., Barbieri, L. R., & Carter, G. T. (2001). Absolute stereochemistry of the spiroxins. Canadian Journal of Chemistry, 79, 1786–1791.

    Article  CAS  Google Scholar 

  46. Kwan, A., Stein, J., & Carrico-Moniz, D. (2011). A catalytic asymmetric entry to enantioenriched tertiary naphthoquinols via a facile tandem oxidation/ring-opening sequence. Tetrahedron Letters, 52, 3426–3428.

    Article  CAS  Google Scholar 

  47. Miyashita, K., Sakai, T., & Imanishi, T. (2003). Total Synthesis of (±)-Spiroxin C. Organic Letters, 5, 2683–2686.

    Article  CAS  PubMed  Google Scholar 

  48. Nabatame, K., Hirama, M., & Inoue, M. (2008). A simple desymmetrization approach to the spiroxin framework. Heterocycles, 76, 1011–1016.

    Article  CAS  Google Scholar 

  49. Ando, Y., Hanaki, A., Sasaki, R., Ohmori, K., & Suzuki, K. (2017). Stereospecificity in intramolecular photoredox reactions of naphthoquinones: Enantioselective total synthesis of (-)-spiroxin C. Angewandte Chemie International Edition, 56, 11460–11465.

    Article  CAS  PubMed  Google Scholar 

  50. Ando, Y., Matsumoto, T., & Suzuki, K. (2017). Intramolecular photoredox reaction of naphthoquinone derivatives. Synlett, 28, 1040–1045.

    Article  CAS  Google Scholar 

  51. Krohn, K., Florke, U., John, M., Root, N., Steingrover, K., Aust, H.-J., Draeger, S., Schulz, B., Antus, S., Simonyi, M., & Zsila, F. (2001). Biologically active metabolites from fungi. Part 16: New preussomerins J, K and L from an endophytic fungus: Structure elucidation, crystal structure analysis and determination of absolute configuration by CD calculations. Tetrahedron, 57, 4343–4348.

    Article  CAS  Google Scholar 

  52. Vilella, D., Sanchez, M., Platas, G., Salazar, O., Genillound, O., Royo, I., Cascales, C., Martın, I., Dıez, T., Silverman, K. C., Lingham, R. B., Singh, S. B., Jayasuriya, H., & Pelaez, F. (2000). Inhibitors of farnesylation of Ras from a microbial natural products screening program. Journal of Industrial Microbiology and Biotechnology, 25, 315–327.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, L., Zhao, J., Shan, T., Cai, X., & Peng, Y. (2010). Spirobisnaphthalenes from fungi and their biological activities. Mini Reviews in Medicinal Chemistry, 10, 977–989.

    Article  CAS  PubMed  Google Scholar 

  54. Paquette, L. A., & Sugimura, T. (1986). Enantiospecific total synthesis and absolute configurational assignment of (-)-punctatin A (antibiotic M95464). Journal of the American Chemical Society, 108, 3841–3842.

    Article  CAS  Google Scholar 

  55. Anderson, J. R., Briant, C. E., Edwards, R. L., Mabelis, R. P., Poyser, J. P., Spencer, H., & Whalley, A. J. S. (1984). Punctatin A (antibiotic M95464): X-ray crystal structure of a sesquiterpene alcohol with a new carbon skeleton from the fungus, Paronia punctate. Journal of the Chemical Society, Chemical Communications, 7, 405–406.

    Article  Google Scholar 

  56. Herz, W., & Wahlberg, I. (1974). Punctatin: A new germacradienolide from Liatris punctata. Phytochemistry, 13, 318.

    Article  Google Scholar 

  57. Anderson, J. R., Edwards, R. L., Freer, A. A., Mabelis, R. P., Poyser, J. P., Spencer, H., & Whalley, A. J. S. (1984). Punctatins B and C (antibiotics M95154 and M95155): further sesquiterpene alcohols from the fungus Poronia punctata. Journal of the Chemical Society, Chemical Communications, 1984, 917–919.

    Article  Google Scholar 

  58. Sugimura, T., & Paquette, L. A. (1987). Enantiospecific total synthesis of the sesquiterpene antibiotics (-)-punctatin A and (+)-punctatin D. Journal of the American Chemical Society, 109, 3017–3024.

    Article  CAS  Google Scholar 

  59. Wagner, P. J., & Park, B.-S. (1991). Photoinduced hydrogen atom abstraction by carbonyl compounds. Organic Photochemistry, 11, 227–366.

    CAS  Google Scholar 

  60. Eagleson, M. (1994). Concise Encyclopedia Chemistry (1st ed.). Berlin: Walter de Gruyter.

    Google Scholar 

  61. Henriques, A. T., Lopes, S. O., Paranhos, J. T., & Gregianini, T. S. (2004). N, beta-D-glucopyranosyl vincosamide, a light regulated indole alkaloid from the shoots of Psychotria leiocarpa. Phytochemistry, 65, 449–454.

    Article  CAS  PubMed  Google Scholar 

  62. Amirkia, V., & Heinrich, M. (2014). Alkaloids as drug leads—a predictive structural and biodiversity-based analysis. Phytochemistry Letters, 10, 5.

    Article  Google Scholar 

  63. Dotson, J. J., Bachman, J. L., Garcia-Garibay, M. A., & Garg, N. K. (2020). Discovery and total synthesis of a Bis(cyclotryptamine) alkaloid bearing the elusive piperidinoindoline Scaffold. Journal of the American Chemical Society, 142, 11685–11690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. May, J. A., & Stoltz, B. (2006). The structural and synthetic implications of the biosynthesis of the calycanthaceous alkaloids, the communesins, and nomofungin. Tetrahedron, 62, 5262–5271.

    Article  CAS  Google Scholar 

  65. Schmidt, M. A., & Movassaghi, M. (2008). New strategies for the synthesis of hexahydropyrroloindole alkaloids inspired by biosynthetic hypotheses. Synlett, 2008, 313–324.

    Article  Google Scholar 

  66. Xu, J.-B., & Cheng, K.-J. (2015). Studies on the alkaloids of the calycanthaceae and their syntheses. Molecules, 20, 6715–6738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kirby, G. W., Shah, S. W., & Herbert, E. J. (1969). Biosynthesis of chimonanthine from [2–3H]tryptophan and [2–3H]tryptamine. Journal of the Chemical Society C: Organic, 14, 1916–1919.

    Article  CAS  Google Scholar 

  68. Steven, A., & Overman, L. E. (2007). Total synthesis of complex cyclotryptamine alkaloids: Stereocontrolled construction of quaternary carbon stereocenters. Angewandte Chemie International Edition, 46, 5488–5508.

    Article  CAS  PubMed  Google Scholar 

  69. Lu, Z., Li, Y., Deng, J., & Li, A. (2013). Total synthesis of the Daphniphyllum alkaloid daphenylline. Nature Chemistry, 5, 679–684.

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi, J., & Kubota, T. (2009). The Daphniphyllum alkaloids. Natural Products Reports, 26, 936–962.

    Article  CAS  Google Scholar 

  71. Zhang, Q., Di, Y.-T., Li, C.-S., Fang, X., Tan, C.-J., Zhang, Z., Zhang, Y., He, H.-P., Li, S.-L., & Hao, X.-J. (2009). Daphenylline, a new alkaloid with an unusual skeleton, from Daphniphyllum longeracemosum. Organic Letters, 11, 2357–2359.

    Article  CAS  PubMed  Google Scholar 

  72. Baran, P. S., Maimone, T. J., & Richter, J. M. (2007). Total synthesis of marine natural products without using protecting groups. Nature, 446, 404–408.

    Article  CAS  PubMed  Google Scholar 

  73. Maimone, T. J., Ishihara, Y., & Baran, P. S. (2015). Scalable total syntheses of (−)-hapalindole U and (+)-ambiguine H. Tetrahedron, 71, 3652–3665.

    Article  CAS  PubMed  Google Scholar 

  74. Smitka, T. A., Bonjouklian, F., Doolin, L., Jones, N. D., & Deeter, J. B. (1992). Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from three genera of blue-green algae belonging to the Stigonemataceae. Journal of Organic Chemistry, 57, 857–861.

    Article  CAS  Google Scholar 

  75. Raveh, A., & Carmeli, S. (2007). Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. Journal of Natural Products, 70, 196–201.

    Article  CAS  PubMed  Google Scholar 

  76. Moore, R. E., Cheuk, C., & Patterson, G. M. L. (1984). Hapalindoles: New alkaloids from the blue-green alga Hapalosiphon fontinalis. Journal of the American Chemical Society, 106, 6456–6457.

    Article  CAS  Google Scholar 

  77. Raja, A., & Prabakarana, P. (2011). Actinomycetes and drug-an overview. American Journal of Drug Discovery and Development, 1, 75–84.

    Article  Google Scholar 

  78. Nivina, A., Yuet, K. P., Hsu, J., & Khosla, C. (2019). Evolution and diversity of assembly-line polyketide synthases. Chemical Reviews, 119, 12524–12547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawamata, T., Nagatomo, M., & Inoue, M. (2017). Total synthesis of zaragozic acid C: Implementation of photochemical C(sp3)–H acylation. Journal of the American Chemical Society, 139, 1814–1817.

    Article  CAS  PubMed  Google Scholar 

  80. Bergstrom, J. D., Kurtz, M. M., Rew, D. J., Amend, A. M., Karkas, J. D., Bostedor, R. G., Bansal, V. S., Dufresne, C., VanMiddlesworth, F. L., & Hensens, O. D. (1993). Zaragozic acids: A family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proceedings of the National academy of Sciences of the United States of America, 90, 80–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dufresne, C., Wilson, K. E., Zink, D., Smith, J., Bergstrom, J. D., Kurtz, M., Rew, D., Nallin, M., Jenkins, R., Bartizal, K., Trainor, C., Bills, G., Meinz, M., Huang, L., Onishi, J., Milligan, J., Mojena, M., & Pelaez, F. (1992). The isolation and structure elucidation of zaragozic acid C, a novel potent squalene synthase inhibitor. Tetrahedron, 48, 10221–10226.

    Article  CAS  Google Scholar 

  82. Sidebottom, P. J., Highcock, R. M., Lane, S. J., Procopiou, P. A., & Watson, N. S. (1992). The squalestatins, novel inhibitors of squalene synthase produced by a species of PHOMA. Journal of Antibiotics, 45, 648–658.

    Article  CAS  Google Scholar 

  83. Dawson, M. J., Farthing, J. E., Marshall, P. S., Middleton, R. F., O’Neill, M. J., Shuttleworth, A., Stylli, C., Tait, R. M., Taylor, P. M., Wildman, H. G., Buss, A. D., Langley, D., & Hayes, M. V. (1992). The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. Journal of Antibiotics, 45, 639–647.

    Article  CAS  Google Scholar 

  84. Sears, P., & Wong, C. H. (1999). Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition. Angewandte Chemie International Edition, 38, 2300–2324.

    Article  CAS  PubMed  Google Scholar 

  85. Chen, H., Zhang, H. Z., Feng, J. N., Li, X. L., Jiao, L. L., Qin, Z. B., Yin, Q. M., & Zhang, J. C. (2009). A convenient synthesis and biological evaluation of novel pseudonucleosides bearing a thiazolidin-4-one Moiety by tandem staudinger/aza-wittig/cyclization. European Journal of Organic Chemistry, 2009, 6100–6103.

    Article  Google Scholar 

  86. Zhang, P., Wei, C., Wang, E., Wang, W., Liu, M., Yin, Q., Chen, H., Wang, K., Li, X., & Zhang, J. (2012). Synthesis and biological activities of novel isoxazoline-linked pseudodisaccharide derivatives. Carbohydrate Research, 351, 7–16.

    Article  CAS  PubMed  Google Scholar 

  87. Brian, E. L., & Erick, M. C. (1995). Total synthesis of (+)-trehazolin: optically active spirocycloheptadienes as useful precursors for the synthesis of amino cyclopentitols. Journal of the American Chemical Society, 117, 11811–11812.

    Article  Google Scholar 

  88. Elbein, A. D. (1987). Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annual Review of Biochemistry, 56, 497–534.

    Article  CAS  PubMed  Google Scholar 

  89. Uchida, C., Yamagishi, T., Kitahashi, H., Iwaisaki, Y., & Ogawa, S. (1995). Further chemical modification of trehalase inhibitor trehazolin: Structure and inhibitory-activity relationship of the inhibitor. Bioorganic & Medicinal Chemistry, 3, 1605–1624.

    Article  CAS  Google Scholar 

  90. Breitmeier, E. (2006). Terpenes-Flavors, Fragances, Pharmaca, Pheromones, Wiley-VCH, Weinheim, ISBN: 978-3-527-31786-8.

  91. Sun, L. C., Li, S. Y., Wang, F. Z., & Xin, F. G. (2017). Research progresses in the synthetic biology of terpenoids. Biotechnology Bulletin, 33, 64–75.

    Google Scholar 

  92. Galle, M., Crespo, R., Kladniew, B. R., Villegas, S. M., Polo, M., & de Bravo, M. G. (2014). Suppression by geraniol of the growth of A549 Human lung adenocarcinoma cells and inhibition of the mevalonate pathway in culture and in vivo: Potential use in cancer chemotherapy. Nutrition and Cancer, 66, 888–895.

    Article  CAS  PubMed  Google Scholar 

  93. Piva, O. (1995). Enantio- and diastereoselective protonation of photodienols: Total synthesis of (R)-(-)-Lavandulol. Journal of Organic Chemistry, 60, 7879–7883.

    Article  CAS  Google Scholar 

  94. Henin, F., M’Boungou-M’Passi, A., Muzart, J., & Pete, J. P. (1994). Photoreactivity of α-tetrasubstituted arylketones: Production and asymmetric tautomerization of arylenols. Tetrahedron, 50, 2849–2864.

    Article  CAS  Google Scholar 

  95. Schinz, H., & Seidel, C. F. (1942). Über lavandulol, einen neuen monoterpenalkohol aus lavendelöl. Helvetica Chimica Acta, 25, 1572–1591.

    Article  CAS  Google Scholar 

  96. Eisner, T., Deyrup, M., Jacobs, R., & Meinwald, J. (1986). Necrodols: Anti-insectan terpenes from defensive secretion of carrion beetle (Necrodes surinamensis). Journal of Chemical Ecology, 12, 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  97. Wolf, J. P., & Pfander, H. (1986). C45- und C50-carotinoide. 3. Mitteilung. Synthese von (S)-trisanhydrobacterioruberin. Helvetica Chimica Acta, 69, 62–68.

    Article  CAS  Google Scholar 

  98. Tanaka, K., Ushio, H., Kawabata, Y., & Suzuki, H. (1991). Asymmetric synthesis of (R)-(–)- and (S)-(+)-muscone by enantioselective conjugate addition of chiral dimethylcuprate to (E)-cyclopentadec-2-en-1-one. Journal of the Chemical Society Perkin Transactions, 1, 1445–1452.

    Article  Google Scholar 

  99. Ng, D., Yang, Z., & Garcia-Garibay, M. A. (2004). Total synthesis of (+/-)-herbertenolide by stereospecific formation of vicinal quaternary centers in a crystalline ketone. Organic Letters, 6, 645–647.

    Article  CAS  PubMed  Google Scholar 

  100. Matsuo, A., Yuki, S., & Nakayama, M. (1983). (−)-Herbertenediol and (−)-herbertenolide, two new sesquiterpenoids of the Ent-herbertane class from the liverwort Herberta adunca. Chemistry Letters, 7, 1041–1042.

    Article  Google Scholar 

  101. Matsuo, A., Yuki, S., & Nakayama, M. (1986). Structures of ent-herbertane sesquiterpenoids displaying antifungal properties from the liverwort Herberta adunca. Journal of the Chemical Society Perkin Transactions, 1, 701–710.

    Article  Google Scholar 

  102. der Eycken, E. V., der Eycken, J. V., & Vandewalle, M. (1985). Iridoids: the revised structure of specionin. Journal of the Chemical Society, Chemical Communications, 1985, 1719–1720.

    Article  Google Scholar 

  103. Chang, C. C., & Nakanishi, K. (1983). Specionin, an iridoid insect antifeedant from Catalpa speciosa. Journal of the Chemical Society, Chemical Communications, 1983, 605–606.

    Article  Google Scholar 

  104. Curran, D., Jacobs, P. B., Elliott, R. L., & Kim, B. H. (1987). Total synthesis of (-)-specionin. Journal of the American Chemical Society, 109, 5280–5282.

    Article  CAS  Google Scholar 

  105. Molander, G. A., Jean, S. T., David, J., & Haas, J. (2004). Toward a general route to the Eunicellin diterpenes: The asymmetric total synthesis of deacetoxyalcyonin acetate. Journal of the American Chemical Society, 126, 1642–1643.

    Article  CAS  PubMed  Google Scholar 

  106. Coll, J. C. (1992). The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chemical Reviews, 92, 613–631.

    Article  CAS  Google Scholar 

  107. Kennard, O., Watson, D. G., Riva di Sanserverino, L., Tursch, B., Bosmans, R., & Djerassi, C. (1968). Chemical studies of marine invertebrates. IV. Terpenoids LXII. Eunicellin, a diterpenoid of the gorgonian Eunicella stricta. X-ray diffraction analysis of Eunicellin dibromide. Tetrahedron Letters, 9, 2879–2884.

    Article  Google Scholar 

  108. Uchio, Y., Kodama, M., Usui, S., & Fukazawa, Y. (1992). Three new eunicellin-based diterpenoids from an Okinawan Cladiella species of soft coral. Tetrahedron Letters, 33, 1317–1320.

    Article  CAS  Google Scholar 

  109. Yamada, K., Ogata, N., Ryu, K., Miyamoto, T., Komori, T., & Higuchi, R. (1997). Bioactive terpenoids from octocorallia. 3. A new eunicellin-based diterpenoid from the soft coral Cladiella sphaeroides. Journal of Natural Products, 60, 393–396.

    Article  CAS  Google Scholar 

  110. Gutiérrez, M., Santamaría, R., Gómez-Reyes, J. F., Guzmán, H. M., Ávila-Román, J., Motilva, V., & Talero, E. (2020). New eunicellin-type diterpenes from the panamanian octocoral briareum asbestinum. Marine Drugs, 18, 84.

    Article  PubMed Central  Google Scholar 

  111. Yoshioka, S., Nagatomo, M., & Inoue, M. (2015). Application of two direct C(sp3)–H functionalizations for total synthesis of (+)-lactacystin. Organic Letters, 17, 90–93.

    Article  CAS  PubMed  Google Scholar 

  112. Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H., & Sasaki, Y. (1991). Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. Journal of Antibiotics, 44, 113–116.

    Article  CAS  Google Scholar 

  113. Fenteany, G., Standaert, R. F., Lane, W. S., Choi, S., Corey, E. J., & Schreiber, S. L. (1995). Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science, 268, 726–731.

    Article  CAS  PubMed  Google Scholar 

  114. Goldberg, A. L. (2012). Development of proteasome inhibitors as research tools and cancer drugs. Journal of Cell Biology, 199, 583–588.

    Article  CAS  Google Scholar 

  115. Glusac, K. (2016). What has light ever done for chemistry? Nature Chemistry, 8, 734–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the moral support from his mother Sadeswari Majhi and he is also thankful to his heavenly father Tarani Majhi. The author is also grateful to the principal of the Triveni Devi Bhalotia College for his support and inspiration throughout.

Funding

Self-funding, no funding is available in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasadhar Majhi.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethics approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majhi, S. Applications of Norrish type I and II reactions in the total synthesis of natural products: a review. Photochem Photobiol Sci 20, 1357–1378 (2021). https://doi.org/10.1007/s43630-021-00100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00100-3

Keywords

Navigation