Skip to main content
Log in

(2R,3R)-3-[(1R)-1-{[tert-Butyl(dimethyl)silyl]oxy}ethyl]-4-oxoazetidin-2-yl Acetate in Zinc- and Samarium-Promoted Substitution Reactions with Methyl 2-Bromopropanoate and Methyl (2-Bromomethyl)prop-2-enoate. Unusual Cleavage of the N1‒C4 Bond in Azetidin-2-one Derivative with Migration of Methoxycarbonyl Group in Synthetic Approaches to Carbapenems and Their Analogs

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The use of zinc in Barbier-type reactions of (2R,3R)-3-[(1R)-1-{[tert-butyl(dimethyl)silyl]oxy}-ethyl]-4-oxoazetidin-2-yl acetates with halogen derivatives led to the formation of expected substitution products. The reaction of the title compound with a reagent prepared from samarium powder, a catalytic amount of iodine, and methyl 2-bromopropanoate in THF gave an anomalous substitution product, methyl 2-{(2S,3S)-3-[(1R)-1-{[tert-butyl(dimethyl)silyl]oxy}ethyl]-4-oxoazetidin-2-yl}-2(R,S)-methyl-3-oxopentanoate. Alkylation of the latter with methyl bromoacetate afforded methyl 2-{(2S,3S)-3-[(1R)-1-{[tert-butyl(dimethyl) silyl]oxy}ethyl]-1-(2-methoxy-2-oxoethyl)-4-oxoazetidin-2-yl}-2(RS)-methyl-3-oxopentanoate which underwent fragmentation through cleavage of the N1–C4 bond under the action of sodium bis(trimethylsilyl)-amide in THF at–78°C. The resulting acyclic amide, dimethyl {(2R,S,3Z)-2-[(1R)-1-{[tert-butyl(dimethyl)-silyl]oxy}ethyl)]-4-methyl-5-oxohept-3-enoylamino}malonate, was smoothly converted to new functionalized N-substituted pyrrolidinones via intramolecular Michael type cyclization in methylene chloride in the presence of NEt3–DMAP–Boc2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garneau-Tsodikova, S. and Wright, G.D., Med. Chem. Commun., 2016, vol. 7, p.10.

    Article  CAS  Google Scholar 

  2. Worthington, R.G. and Melander, C., J. Org. Chem., 2013, vol. 78, p. 4207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berks, A.H., Tetrahedron, 1996, vol. 52, p.331.

    Article  CAS  Google Scholar 

  4. Kippo, T., Fukuyama, T., and Ryu, I., Org. Lett., 2011, vol. 13, p. 3864.

    Article  CAS  PubMed  Google Scholar 

  5. Basu, M.K. and Banik, B.K., Tetrahedron Lett., 2001, vol. 42, p.187.

    Article  CAS  Google Scholar 

  6. Kita, Y., Shibata, N., Tohjo, T., and Yoshida, N., J. Chem. Soc., Perkin Trans. 1, 1992, p. 1795.

    Google Scholar 

  7. Ham, W.H., Oh, Ch.Y., Lee, Y.S., and Jeong, J.H., J. Org. Chem., 2000, vol. 65, p. 8372.

    Article  CAS  PubMed  Google Scholar 

  8. Nagahara, T. and Kanetani, T., Heterocycles, 1987, vol. 25, p.729.

    Article  CAS  Google Scholar 

  9. Shiozaki, M. and Hiraoka, T., Tetrahedron, 1982, vol. 38, p. 3457.

    Article  CAS  Google Scholar 

  10. Meyers, A.I., Sowin, T.J., Schole, S., and Heda, Y., Tetrahedron Lett., 1987, vol. 28, p. 5103.

    Article  CAS  Google Scholar 

  11. Murayama, T., Yoshida, A., Kobayashi, T., and Miura, T., Tetrahedron Lett., 1994, vol. 35, p. 2271.

    Article  CAS  Google Scholar 

  12. Alcaide, B., Amendros, P., Cabrero, G., and Ruiz, P.M., Tetrahedron, 2012, vol. 68, p. 10761.

    Article  CAS  Google Scholar 

  13. Kagan, H.B., Tetrahedron, 2003, vol. 59, p. 10351.

    Article  CAS  Google Scholar 

  14. Krief, A. and Laval, A.M., Chem. Rev., 1999, vol. 99, p.745.

    Article  CAS  PubMed  Google Scholar 

  15. Molander, G.A. and Harris, C.R., Chem. Rev., 1996, vol. 96, p.307.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolaou, K.C., Ellery, S.P., and Chen, J.S., Angew. Chem., Int. Ed., 2009, vol. 48, p. 7140.

    Article  CAS  Google Scholar 

  17. Utimoto, K., Takai, T., Matsui, T., and Matsubara, S., Bull. Soc. Chim. Fr., 1997, vol. 134, p.365.

    CAS  Google Scholar 

  18. Utimoto, K., Matsui, T., Takai, T., and Matsubara, S., Chem. Lett., 1995, vol. 24, p.197.

    Article  Google Scholar 

  19. Castagner, B., Lacombe, P., and Ruel, R., J. Org. Chem., 1998, vol. 63, p. 4551.

    Article  CAS  Google Scholar 

  20. Balaux, E. and Ruel, R., Tetrahedron Lett., 1996, vol. 37, p.801.

    Article  CAS  Google Scholar 

  21. Sharma, P., Mann, M.J.K., Kuila, B., Sing, P., and Bhargawa, G., Synlett, 2016, vol. 27, p.422.

    CAS  Google Scholar 

  22. Bellina, F. and Rossi, R., Tetrahedron, 2006, vol. 62, p. 7213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Miftakhov.

Additional information

Original Russian Text © Z.R. Valiullina, L.S. Khasanova, N.K. Selezneva, L.V. Spirikhin, Yu.N. Belokon’, M.S. Miftakhov, 2018, published in Zhurnal Organicheskoi Khimii, 2018, Vol. 54, No. 7, pp. 1019–1026.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiullina, Z.R., Khasanova, L.S., Selezneva, N.K. et al. (2R,3R)-3-[(1R)-1-{[tert-Butyl(dimethyl)silyl]oxy}ethyl]-4-oxoazetidin-2-yl Acetate in Zinc- and Samarium-Promoted Substitution Reactions with Methyl 2-Bromopropanoate and Methyl (2-Bromomethyl)prop-2-enoate. Unusual Cleavage of the N1‒C4 Bond in Azetidin-2-one Derivative with Migration of Methoxycarbonyl Group in Synthetic Approaches to Carbapenems and Their Analogs. Russ J Org Chem 54, 1023–1030 (2018). https://doi.org/10.1134/S1070428018070096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428018070096

Navigation