Skip to main content
Log in

Facile Synthesis and Optimization of CuO/Cu(OH)2 Nanostructures on Cu-Foil for an Energy Storage Application

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In the present work, an endeavor has been made to develop an effective and binder-free CuO/Cu(OH)2 nanostructure based electrode by facile one-step solution-immersion method. FESEM, XRD and Raman spectroscopy are utilized to identify structural and morphological character of the prepared CuO/Cu(OH)2 nanostructures on the Cu foil. The electrochemical analysis has shown that CuO/Cu(OH)2 nanostructures developed on the Cu foil upon immersion in 0.15 M ammonium persulfate based aqueous solution for 100 min, have displayed a very high specific capacity of 339.7 C g–1/303.7 C g–1 at scan rate 10m V s–1/current density 3.33 A g–1. After 1000 cycles of galvanostatic charge-discharge at a high current density of 10 A g–1, CuO/Cu(OH)2 nanostructures based binder-free electrode has shown no decrease of specific capacity, instead an increase in the value of specific capacity by ~26% is observed. The cyclic voltammetry, galvanostatic charge discharge as well as electrochemical impedance spectroscopic results are justifying the potential candidature of CuO/Cu(OH)2 nanostructures on copper foil as a high performance, binder-free, battery-type electrode for hybrid supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Regin, A.F., Solanki, S.C., and Saini, J.S., Renew. Sust. Energ. Rev., 2008, vol. 9, pp. 2438–2458.

    Article  Google Scholar 

  2. Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D., Renew. Sust. Energ. Rev., 2009, vol. 2, pp. 318–345.

    Article  Google Scholar 

  3. Vangari, M., Pryor, T., and Jiang, Li, J. Energy Eng., 2013, vol. 2, pp. 72–79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  4. Afif, A., Rahman, S.M.H., Azad, A.T., Zaini, J., Islan, Md Aminul, and Azad, A.K., J. Energy Storage, 2019, vol. 25, ID 100852. https://doi.org/10.1016/j.est.2019.100852

    Article  Google Scholar 

  5. Cericola, D., Ruch, P.W., Kötz, R., Novák, P., and Wokaun, A., J. Power Sources, 2010, vol. 9, pp. 2731–2736. https://doi.org/10.1016/j.jpowsour.2009.10.104

    Article  CAS  Google Scholar 

  6. Gopi, C.V.V., Vinodh, M.R., Sambasivam, S., Obaidat, I.M., and Kim, Hee-Je, J. Energy Storage, 2020, vol. 27, p. 101035.

    Article  Google Scholar 

  7. Garcia, F.S., Ferreira, A.A., and Pomilio, J.A., Abstracts of Papers, IEEE Conference, IEEE, 2009, pp. 826–832.

  8. Naoi, K., Naoi, W., Aoyagi, S., Miyamoto, Jun-ichi, and Kamino, T., Acc. Chem. Res., 2013, vol. 5, pp. 1075–1083.

    Article  Google Scholar 

  9. Liu, Q., Nayfeh, O., Nayfeh, M.H., and Yau, Siu-Tung, Nano Energy, 2013, vol. 1, pp. 133–137.

    Article  Google Scholar 

  10. Wang, K., Dong, X., Zhao, C., Qian, X., and Xu, Y., Electrochim. Acta, 2015, vol. 152, pp. 433–442. https://doi.org/10.1016/j.electacta.2014.11.171

    Article  CAS  Google Scholar 

  11. Purushothaman Kamatchi Kamaraj, Balakrishanan Saravanakumar, Inbamani Manohara Babu, Balasubramanian Sethuraman, and Gopalan Muralidharan, RSC Adv., 2014, vol. 45, pp. 23485–23491. https://doi.org/10.1039/C4RA02107J

    Article  Google Scholar 

  12. Ye, J., Li, Z., Dai, Z., Zhang, Z., Guo, M., and Wang, X., J. Electron. Mater, 2016, vol. 8, pp. 4237–4245.

    Article  Google Scholar 

  13. Senthilkumar, V., Yong Soo Kim, Chandrasekaran, S., Balasubramaniyan Rajagopalan, Eui Jung Kim, and Jin Suk Chung, RSC Adv., 2015, vol. 26, pp. 20545–20553. https://doi.org/10.1039/C5RA00035A

    Article  CAS  Google Scholar 

  14. Dubal, D.P., Gund, G.S., Lokhande, C.D., and Holze, R., Mater. Res. Bull., 2013, vol. 2, pp. 923–928.

    Article  Google Scholar 

  15. Faraji, S. and Ani, F.N., J. Power Sources, 2014, vol. 263, pp. 338–360.

    Article  CAS  Google Scholar 

  16. Vidyadharan, B., Misnon, I.I., Ismail, J., Yusoff, M.M., and Jose, R., J. Alloys Compd, 2015, vol. 633, pp. 22–30. https://doi.org/10.1016/j.jallcom.2015.01.278

    Article  CAS  Google Scholar 

  17. Shinde, S.K., Yadav, H.M. Ghodake, G.S., et al., Colloids Surf. B: Biointerfaces, 2019, vol. 181, pp. 1004–1011.

    Article  CAS  PubMed  Google Scholar 

  18. Gholivand, M.B., Heydari, H., Abdolmaleki, A., and Hosseini, H., Mater. Sci. Semicond Pro., 2015, vol. 30, pp. 157–161.

    Article  CAS  Google Scholar 

  19. Li, Y., Chang, S., Liu, X., Huang, J., Yin, J., Wang, G., and Cao, D., Electrochim. Acta, 2012, vol. 85, pp. 393-398.

    Article  CAS  Google Scholar 

  20. Endut, Z., Hamdi, M., and Basirun, W.J., Thin Solid Films, 2013, vol. 528, pp. 213–216.

    Article  CAS  Google Scholar 

  21. Zhang, H., and Zhang, M., Mater. Chem. Phys., 2008, vol. 2–3, pp. 184–187.

    Article  Google Scholar 

  22. Dubal, D.P., Dhawale, D.S., Salunkhe, R.R., Jamdade, V.S., and Lokhande, C.D., J. Alloys Compd., 2010, vols. 1–2, pp. 26–30.

    Article  Google Scholar 

  23. Mao, Y., Qian, Y., Li, L., Li, Y., Xie, J., and Hu, W., J. Mater. Sci., 2020, vol. 16, pp. 6963–6975. https://doi.org/10.1007/s10853-020-04513-w

    Article  CAS  Google Scholar 

  24. Racik, K.M., Manikandan, A., Mahendiran, M., Prabakaran, P., Madhavan, J., and Raj, M.V.A., Phys. E: Low-Dimens. Syst. Nanostructures, 2020, vol. 119, p. 114033. https://doi.org/10.1016/j.physe.2020.114033

    Article  CAS  Google Scholar 

  25. Shaikh, J.S., Pawar, R.S., Devan, R.S., Ma, Y-R., Salvi, P.P., Kolekar, S.S., and Patil, P.S., Electrochim. Acta, 2011, vol. 5, pp. 2127–2134.

    Article  Google Scholar 

  26. Shinde, S.K., Mohite, S.M., Kadam, A.A., Yadav, H.M., Ghodake, G.S., Rajpure, K.Y., Lee, D.S., and Kim, D-Y., J. Electroanal. Chem., 2019, vol. 850, p. 113433.

    Article  CAS  Google Scholar 

  27. Zhang, Y., Li, F., and Huang, M., Mater. Lett., 2013, vol. 112, pp. 203–206.

    Article  CAS  Google Scholar 

  28. Xu, W., Dai, S., Liu, G., Yi, Xi, Hu, C., and Wang, X., Electrochim. Acta, 2016, vol. 203, pp. 1–8.

    Article  CAS  Google Scholar 

  29. Li, Y., Chang, S., Liu, X., Huang, J., Yin, J., Wang, G., and Cao, D., Electrochim. Acta, 2012, vol. 85, pp. 393–398.

    Article  CAS  Google Scholar 

  30. Chaudhary, A., and Barshilia, H.C., J. Phys. Chem. A, 2011, vol. 37, pp. 18213–18220.

    Google Scholar 

  31. Narender, B., Kumar, V., Tomar, M., Gupta, V., and Singh, S.K., J. Inorg. Organomet Polym., 2019, vol. 4, pp. 1067–1075.

    Google Scholar 

  32. Heng, B., Qing, C., Sun, D., Wang, B., Wang, H., and Tang, Y., RSC Adv., 2013, vol. 36, pp. 15719–15726. https://doi.org/10.1039/C3RA42869A

    Article  Google Scholar 

  33. Momeni, M.M., Nazari, Z., Kazempour, A., Hakimiyan, M., and Mirhoseini, S.M., Surf. Eng., 2014, vol. 11, pp. 775–778.

    Article  Google Scholar 

  34. Sudhakar, Y.N., Hemant, H., Nitinkumar, S.S., Poornesh, P., and Selvakumar, M., Ionics, 2017, vol. 5, pp. 1267–1276.

    Article  Google Scholar 

  35. Ates, M., Serin, M.A., Ekmen, I., and Ertas, Y.N., Polym. Bull., 2015, vol. 10, pp. 2573–2589. https://doi.org/10.1007/s00289-015-1422-4

    Article  CAS  Google Scholar 

  36. Huang, J., Wu, H., Cao, D., and Wang, G., Electrochim. Acta, 2012, vol. 75, pp. 208–212.

    Article  CAS  Google Scholar 

  37. Hsu, Yu-K., Chen, Y-C., and Lin, Y-G., J. Electroanal. Chem., 2012, vol. 673, pp. 43–47.

    Article  CAS  Google Scholar 

  38. Liang, J., Naoki, K., Tetsuo, S., and Jimbo, T., J. Nanomater., 2011, p. 2011. https://doi.org/10.1155/2011/268508

    Article  CAS  Google Scholar 

  39. Moosavifard, S.E., El-Kady, M.F., Rahmanifar, M.S., Kaner, R.B., and Mousavi, M.F., ACS Appl. Mater. Interfaces, 2015, vol. 8, pp. 4851–4860. https://doi.org/10.1021/am508816t

    Article  CAS  Google Scholar 

  40. Shinde, S.K., Dubal, D.P., Ghodake, G.S., and Fulari, V., RSC Adv., 2015, vol. 6, pp. 4443–4447. https://doi.org/10.1039/C4RA11164H

    Article  CAS  Google Scholar 

  41. Wen, Tao, Wu, X-L., Zhang, S., Wang, X., and Xu, A-W., Chem. Asian J., 2015, vol. 3, pp. 595–601.

    Article  Google Scholar 

  42. Zhang, R., Chen, C., Yu, H., Cai, S., Xu, Y., Yang, Y., and Chang, H., J. Electroanal. Chem., 2021, vol. 893, p. 115323.

    Article  CAS  Google Scholar 

  43. Espejo, E.M.A., and Balela, M.D.L., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 1, p. 012050

    Article  Google Scholar 

  44. Xu, Z., Sun, S., Han, Y., Wei, Z., Cheng, Y., Yin, S., and Cui, W., ACS Appl. Energy Mater., 2020, vol. 6, pp. 5393–5404. https://doi.org/10.1021/acsaem.0c00393

    Article  CAS  Google Scholar 

  45. Espejo, E.M.A. and Balela, M.D.L., Solid State Phenom., 2017, vol. 266, pp. 105–109.

    Article  Google Scholar 

  46. , Mishra Abhaya Kumar, , Arpan Kumar Nayak, , Ashok Kumar Das, and , Debabrata Pradhan, J. Phys. Chem. A, 2018, vol. 21, pp. 11249–11261. https://doi.org/10.1021/acs.jpcc.8b02210

    Article  CAS  Google Scholar 

  47. Liu, Y., Cao, X., Jiang, D., Jia, D., and Liu, J., J. Mater. Chem., 2018, vol. 22, pp. 10474–10483.

    Article  Google Scholar 

  48. Cao, X., Cui, L., Liu, Ying, B., Liu, Jia, D., Yang, W., Razal, J.M., and Liu, J., J. Mater. Chem., 2019, vol. 8, pp. 3815–3827.

    Article  Google Scholar 

  49. Saraf, M., Natarajan, K., and Mobin, S.M., ACS Appl. Energy Mater., 2018, vol. 10, pp. 16588–16595.

    Article  CAS  Google Scholar 

  50. Chen, J., Song, S., Huang, P., Xu, L., and Blackwood, D.J., Chem. ElectroChem, 2017, vol. 12, pp. 3188–3195.

    Google Scholar 

  51. Patake, V.D., Joshi, S.S., Lokhande, C.D., and Oh-Shim, Joo, Mater. Chem. Phys., 2009, vol. 1, pp. 6–9.

    Article  Google Scholar 

  52. Yu, L., Jin, Y., Li, L., Ma, J., Wang, G., Geng, B., and Zhang, X., CrystEngComm, 2013, vol. 38, pp. 7657–7662.

    Article  Google Scholar 

  53. Zhang, Yu, Ming, X., Fei, H., Zhong, L., and Wen, Q., Int. J. Electrochem. Sci, 2013, vol. 6, pp. 8645–8661.

    Article  Google Scholar 

  54. Shinde, S.K., Dubal, D.P., Ghodake, G.S., and Fulari, V.J., RSC Adv., 2015, vol. 6, pp. 4443–4447.

    Article  Google Scholar 

  55. Shinde, S.K., Dubal, D.P., Ghodake, G.S., Kim, D.Y., and Fulari, V.J., J. Electroanal. Chem., 2014, vol. 732, pp. 80–85.

    Article  CAS  Google Scholar 

  56. Wang, G., Huang, J., Chen, S., Gao, Y., and Cao, D., J. Power Sources, 2011, vol. 13, pp. 5756–5760.

    Article  Google Scholar 

  57. Lamberti, A., Fontana, M., Bianco, S., and Tresso, E., Int. J. Hydrog. Energy, 2016, vol. 27, pp. 11700–11708.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the Lovely Professional University for providing the characterization facilities and funds under the scheme LPU/DRDSEED/SAC/65. Further, the authors also want to thank Council of Scientific and Industrial Research, New Delhi, India for providing the funding assistance under the EMR scheme (Grant number: 03(1469)/19/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawaljeet Singh Samra.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KP, J., Kumar, P., Jabeen, S. et al. Facile Synthesis and Optimization of CuO/Cu(OH)2 Nanostructures on Cu-Foil for an Energy Storage Application. Russ J Appl Chem 95, 1723–1737 (2022). https://doi.org/10.1134/S1070427222110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222110076

Keywords:

Navigation