Skip to main content

Advertisement

Log in

Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)/copper oxide (CuO), poly(3,4-ethylenedioxythiophene) (PEDOT)/CuO and polypyrrole (PPy)/CuO have been synthesized electrochemically on glassy carbon electrode in sodium dodecyl sulfate in sulfuric acid solution as an electroactive material. To our best knowledge, the first report on comparison of supercapacitor behaviors of PANI/CuO, PEDOT/CuO and PPy/CuO nanocomposite films was studied by electrochemical impedance spectroscopy, related to the plots of Nyquist, Bode magnitude and Bode phase. The highest specific capacitance (C sp) was obtained as C sp = 286.35 F × g−1 at the scan rate of 20 mV × s−1 for PANI/CuO amongst the PEDOT/CuO (C sp = 198.89 F × g−1 at 5 mV × s−1) and PPy/CuO (C sp = 20.78 F × g−1 at 5 mV × s−1) by CV method. Long-term stability of the capacitor has also been tested by CV method, and the results indicated that, after 500 cycles, the specific capacitance of PANI/CuO nanocomposite film is 81.82 % of the initial capacitance. An equivalent circuit model of R s(C dl(R 1(Q(R 2 W)))) has been used to fit the experimental and theoretical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim SY, Lee KH, Chin BD, Yu JW (2009) Network structure organic photovoltaic devices prepared by electrochemical copolymerization. Sol Energy Mater Sol Cells 93(1):129–135

    Article  CAS  Google Scholar 

  2. Kasama D, Takata R, Kajii H, Ohmori Y (2009) Optical property of poly(9,9-dioctylfluorene) gel with β phase and application to polymer light emitting diode. Thin Solid Films 518(2):559–562

    Article  CAS  Google Scholar 

  3. Ciobotaru IC, Matei E, Ciobotaru CC, Polosan S (2014) Embedding of IrQ(ppy)(2) or organometallic compounds in polypyrrole conducting polymer for OLED’s applications. Synth Met 198:323–328

    Article  CAS  Google Scholar 

  4. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45(15–16):2403–2421

    Article  CAS  Google Scholar 

  5. Yeh JM, Chen CL, Chen YC, Ma CY, Lee KR, Wei Y, Li S (2002) Enhancement of corrosion protection effect of poly(0-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials. Polymer 43(9):2729–2736

    Article  CAS  Google Scholar 

  6. He H, Zhu J, Tao NJ, Nagahara LA, Amlani I, Tusi R (2001) A conducting polymer nanojunction switch. J Am Chem Soc 123(31):7730–7731

    Article  CAS  Google Scholar 

  7. Frackowiak E, Khomenko V, Jurewicz K, Lota K, B´Eguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153(2):413–418

    Article  CAS  Google Scholar 

  8. Ates M, Uludag N, Karazehir T (2012) Copolymer formation of 9-(2 (benzyloxy) ethyl)-9H-carbazole and 1-tosyl-1H-pyrrole coated on glassy carbon electrode and electrochemical impedance spectroscopy. J Solid State Electrochem 16(8):2639–2649

    Article  CAS  Google Scholar 

  9. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficient. Nat Photonics 3(11):649–653

    Article  CAS  Google Scholar 

  10. Lipomi DJ, Bao ZA (2011) Stretchable, elastic materials and devices for solar energy conversion. Energy Environ Sci 4(9):3314–3328

    Article  CAS  Google Scholar 

  11. Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) High-efficiency blue and white organic light-emitting devices incorporating a blue iridium carbene complex. Adv Mater 22(44):5003–5007

    Article  CAS  Google Scholar 

  12. Kim FS, Ren GQ, Jenekhe SA (2011) One-dimensional nanostructures of pi-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics. Chem Mater 23:682–732

    Article  CAS  Google Scholar 

  13. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148(3–4):493–498

    Article  CAS  Google Scholar 

  14. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    Article  CAS  Google Scholar 

  15. Ates M, Uludag N, Karazehir T (2012) Electrolyte effects of poly(3-methylthiohene) via PET/ITO and synthesis of 5-(3,6-di(thiophene-2-yl)-9H-carbazole-9-yl) pentanitrile on electrochemical impedance spectroscopy. J Appl Polym Sci 125(4):3302–3312

    Article  CAS  Google Scholar 

  16. Arbizzani C, Mastragostino M, Meneghello L, Paraventi R (1996) Electronically conducting polymers and activated carbon: electrode materials in supercapacitor technology. Adv Mater 8(4):331–334

    Article  CAS  Google Scholar 

  17. Mastragostino M, Paraventi R, Zanelli A (2000) Supercapacitors based on composite polymer electrodes. J Electrochem Soc 147(9):3167–3170

    Article  CAS  Google Scholar 

  18. Snook GA, Kao P, Best AS (2011) Conducting polymer based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  19. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymers-based electrochemical supercapacitors-Progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  20. Pan L, Qiu H, Dou C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11:2636–2657

    Article  CAS  Google Scholar 

  21. Li D, Huang JX, Li D, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145

    Article  CAS  Google Scholar 

  22. Tran HD, Li D, Kaner RB (2009) One-dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv Mater 21(14–15):1487–1499

    Article  CAS  Google Scholar 

  23. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications. In: (ed) Hoboken, Wiley-Interscience, New York, pp 121

  24. Lang G, Inzelt G (1999) An advanced model of the impedance of polymer film electrodes. Electrochim Acta 44:2037–2051

    Article  CAS  Google Scholar 

  25. Ma R, Bando Y, Zhang L, Sasaki T (2004) Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv Mater 16(11):918–922

    Article  CAS  Google Scholar 

  26. Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104(10):2287–2298

    Article  CAS  Google Scholar 

  27. Wu MS, Huang YA, Yang CH, Jow JJ (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrogen Energy 32(17):4153–4159

    Article  CAS  Google Scholar 

  28. Wahdame B, Candusso D, Francois X, Harel F, Kauffmann JM, Coquery G (2009) Design of experiment techniques for fuel cell characterization and development. Int J Hydrogen Energy 34(2):967–980

    Article  CAS  Google Scholar 

  29. Sen P, De A (2010) Electrochemical performances of poly(3,4-ethylenedioxythiophene)-NiFe(2)O(4) nanocomposite as electrode for supercapacitor. Electrochem Acta 55(16):4677–4684

    Article  CAS  Google Scholar 

  30. Liu C, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    Article  CAS  Google Scholar 

  31. Dhibar S, Sahoo S, Das CK (2013) Fabrication of transition-metal-doped polypyrrole/multiwalled carbon nanotubes nanocomposites for supercapacitor applications. J Appl Polym Sci 130:554–562

    Article  CAS  Google Scholar 

  32. Aradilla D, Estrany F, Alemán C (2011) Symmetric supercapacitors based on multilayers of conducting polymers. J Phys Chem C 115(16):8430–8438

    Article  CAS  Google Scholar 

  33. Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2005) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloy Compd 492:26–30

    Article  Google Scholar 

  34. Xu YY, Chen DR, Jiao XL (2005) Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J Phys Chem B 109:13561–13566

    Article  CAS  Google Scholar 

  35. Jundale DM, Navale ST, Khuspe GD, Dalavi DS, Patil PS, Patil VB (2013) Polyaniline–CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies. J Mater Sci Mater Electron 24:3526–3535

    Article  CAS  Google Scholar 

  36. Dubal VD, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitors application. J Alloys Compd 492:26–30

    Article  CAS  Google Scholar 

  37. Patake VD, Joshi SS, Lokhande CD, Joo OS (2009) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6–9

    Article  CAS  Google Scholar 

  38. Pendashteh A, Mousavi MF, Rahmanifar MS (2013) Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim Acta 88:347–357

    Article  CAS  Google Scholar 

  39. Sharma P, Bhatti TS (2010) A review on electrochemical double-layer capacitors. Energy Convers Manag 51(12):2901–2912

    Article  CAS  Google Scholar 

  40. Kumar A, Singh RK, Singh HK, Srivastava P, Singh R (2014) Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors. J Power Sources 246:800–807

    Article  CAS  Google Scholar 

  41. Fiordiponti P, Pistoia G (1989) An impedance study of polyaniline films in aqueous and organic solutions. Electrochim Acta 34(2):215–221

    Article  CAS  Google Scholar 

  42. Guler FG, Gilsing HD, Schulz B, Sarac AS (2012) Impedance and morphology of hydroxy- and chloro-functionalized poly(3,4-propylenedioxythiophene) nanostructures. J Nanosci Nanotechnol 12(10):7869–7878

    Article  CAS  Google Scholar 

  43. Sarac AS, Gilsing HD, Gencturk A, Schulz B (2007) Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiohene on carbon fiber for microsupercapacitor. Prog Org Coat 60(4):281–286

    Article  CAS  Google Scholar 

  44. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  CAS  Google Scholar 

  45. Shi SL, Zhang LZ, Li JS (2009) Electrical and dielectric properties of multiwall carbon nanotube/polyaniline composites. J Polym Res 16(4):395–399

    Article  CAS  Google Scholar 

  46. Urquidimacdonald M, Real S, Macdonald DD (1990) Applications of Kramers–Kronig transform in the analysis of electrochemical impedance data 3. Stability and linearity. Electrochim Acta 35(10):1559–1566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from Namik Kemal University, Tekirdag, Turkey, project number: NKUBAP.00.10.AR.14.11 is gratefully acknowledged. Authors thank Serhat Tıkız (Afyon Kocatepe Uni., TUAM, Afyon, Turkey) for recording SEM measurements. Authors also thank Dr. Argun Gokceoren (ITU, Istanbul, Turkey) for FTIR-ATR measurements.

Conflict of interest

Authors must disclose all relationships or interests that could have direct or potential influence or impart bias on the work. Although an author may not feel there is any conflict, disclosure of relationships and interests provides a more complete and transparent process, leading to an accurate and objective assessment of the work. Awareness of a real or perceived conflicts of interest is a perspective to which the readers are entitled. There is not meant to imply that a financial relationship with an organization that sponsored the research or compensation received for consultancy work is appropriate. Examples of potential conflicts of interests that are directly or indirectly related to the research may include but are not limited to the following: research grants from funding agencies (Project Number: NKUBAP.00.10.AR.14.11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, M., Serin, M.A., Ekmen, I. et al. Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym. Bull. 72, 2573–2589 (2015). https://doi.org/10.1007/s00289-015-1422-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1422-4

Keywords

Navigation