Skip to main content
Log in

Thermal Oxidation Resistance of Polyethylene Films Containing Copper and Ascorbic Acid

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The thermal oxidative resistance of polyethylene films containing ascorbic acid and dispersed copper has been studied by IR spectroscopy. Experiments with the joint incorporation of ascorbic acid and dispersed copper into polyethylene have shown that a small synergistic effect of increasing the thermal oxidative resistance occurs in the resulting composite. A scheme was proposed that explains the reasons for the observed effect of increasing the thermal oxidative resistance of polyethylene. The optimal ratio of copper and ascorbic acid concentrations, leading to an effective increase in the thermal oxidative resistance of the polymer film, has been revealed. The selection of modifiers and their concentrations in the polymer was made in accordance with the main requirements for the composition of oxo-biodegradable additives for polyolefins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.
Scheme
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., Yuan, Q., Long, Y., Colin, P., and Leong, K.H., Prog. Polym. Sci., 2011, vol. 36, no. 8, pp. 1015–1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002

    Article  CAS  Google Scholar 

  2. Chiellini, E., Corti, A., DʹAntone, S., and Wiles, D.M., Handbook of Biodegradable Polymers, Lendlein, A. and Sisson, A., New York: Wiley Online Library, 2011. https://doi.org/10.1002/9783527635818.ch16

    Book  Google Scholar 

  3. Wiles, D.M. and Scott, G., Polym. Degrad. Stab., 2006, vol. 91, no. 7, pp. 1581–1592. https://doi.org/10.1016/j.polymdegradstab.2005.09.010

    Article  CAS  Google Scholar 

  4. Nikolić, M.A., Gauthier, E., Colwell, J.M., Halley, P., Bottle, S.E., Laycock, B., and Truss, R., Polym. Degrad. Stab., 2017, vol. 145, pp. 102–119. https://doi.org/10.1016/j.polymdegradstab.2017.07.018

    Article  CAS  Google Scholar 

  5. Lukanina, Yu.K., Kolesnikova, N.N., Popov, A.A., and Khvatov, A.V., Khim. Fizika, 2019, vol. 38, no. 4, pp. 69–73. https://doi.org/10.1134/S0207401X19040095

    Article  Google Scholar 

  6. Grigor’eva, E.A., Popov, A.A., Ol’khov, A.A., and Kolesnikova, N.N., Abstracts of Papers, Biokhim. fizika: Tr. XVI Mezhdunar. molodezh. konf. IBKhF PAH-VUZy (Int. Young Conf. on Biol. Chem. Physics, Russ. Acad. of Sciences-VUZy), Moscow: RUDN, 2017.

  7. US Patent 5854304A (publ. 1998).

  8. RU Patent 2352597 C1 (publ. 2009).

  9. US Patent 20050154097 (publ. 2005).

  10. US Patent 20060280923 (publ. 2006).

  11. Denisov, E.T., Okislenie i destruktsiya karbotsepnykh polimerov (Oxidation and Destruction of Carbon Chain Polymers), Leningrad: Khimiya, 1990.

    Google Scholar 

  12. Lin, D.G. and Vorobieva, E.V., J. Appl. Polym. Sci., 2001, vol. 80, no. 11, pp. 2047–2052. https://doi.org/10.1002/app.1303

    Article  CAS  Google Scholar 

  13. Nimse, S.B. and Pal, D., RSC Adv., 2015, vol. 5, no. 35, pp. 27986–28006. https://doi.org/10.1039/C4RA13315C

    Article  CAS  Google Scholar 

  14. Lin, D.G., Vorobyeva, E.V., Marchenko, N.V., Russ. J. Appl. Chem., 2005, vol. 78, no. 9, pp. 1503–1507. https://doi.org/10.1007/s11167-005-0547-x 

    Article  CAS  Google Scholar 

  15. Xu, J. and Jordan, R.B., Inorg. Chem., 1990, vol. 29, no. 16, pp. 2933–2936.

    Article  CAS  Google Scholar 

  16. Kadyrova, R.G., Kabirov, G.F., and Mullakhmetov, R.R., Uchen. Zap. Kazan. Gos. Akad. Veterinarnoi Meditsiny im. N. E. Baumana, 2015, vol. 222, no. 2, pp. 118–123.

    Google Scholar 

  17. Shtamm, E.V., Purmal, A.P., and Skurlatov, Y.I., Int. J. Chem. Kinet., 1979, vol. 11, pp. 461–494. https://doi.org/10.1002/kin.550110503

    Article  CAS  Google Scholar 

  18. Lacoste, J. and Carlsson, D.J., J. Polym. Sci. Part A: Polym. Chem., 1992, vol. 30, no. 3, pp. 493–500. https://doi.org/10.1002/pola.1992.080300316

    Article  CAS  Google Scholar 

  19. Antonovskii, V.L. and Khursan, S.L., Fizicheskaya khimiya organicheskikh peroksidov (Physical Chemistry of Organic Peroxides), Moscow: IKTs Akademkniga, 2003.

    Google Scholar 

  20. Deutsch, J.C., Anal. Biochem., 1998, vol. 255, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state program of scientific research of the Republic of Belarus “Physical materials science, new materials and technologies” (subprogram “Polymer materials and technologies,” problem no. 6.77; 2019–2020, subprogram “Multifunctional and composite materials,” problem no. 4.1.4 , 2021–2025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Vorobyova.

Ethics declarations

The author declares that there is no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1155–1163, January, 2021 https://doi.org/10.31857/S0044461821090061

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyova, E.V. Thermal Oxidation Resistance of Polyethylene Films Containing Copper and Ascorbic Acid. Russ J Appl Chem 94, 1232–1239 (2021). https://doi.org/10.1134/S1070427221090068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090068

Keywords:

Navigation