Skip to main content
Log in

Prospects for Using Graphene Nanomaterials: Sorbents, Membranes, and Gas Sensors

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Properties of graphene and its derivatives, allowing these materials to be used as effective sorbents, membranes, and sensitive elements of gas sensors, are considered. Data on procedures for preparing graphene and its oxide are presented. The literature survey demonstrates the possibility of developing selective sorbents based on graphene nanomaterials for many industrial processes including water desalination and recovery of radionuclides from process solutions. As judged from the results of laboratory experiments, membranes containing graphene and its oxides can be used in foreseeable future for nanofiltration, water treatment, and gas drying. Large-scale commercial use of graphene is yet restricted by the lack of economically acceptable procedures for preparing graphene nanomaterials of large linear size. For fabricating gas and biosensors, the millimeter size of receptor elements containing graphene and its derivatives is sufficient, and this size is achievable today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Peierles, R.S., Helv. Phys. Acta, 1934, vol. 7, pp. 81–83.

    Google Scholar 

  2. Landau, L.D., Zh. Teor. Eksp. Fiz., 1937, vol. 7, pp. 627–632.

    Google Scholar 

  3. Eletskii, A.V., Iskandarova, I.M., Knizhnik, A.A., and Krasikov, D.N., Phys.–Usp., 2011, vol. 54, no. 3, pp. 227–256. https://doi.org/10.3367/UFNr.0181.201103a.0233 

    Article  CAS  Google Scholar 

  4. Geim, A.K., Usp. Fiz. Nauk, 2011, vol. 181, pp. 1284–1298. https://doi.org/10.3367/UFNr.0181.201112e.1284

    Article  Google Scholar 

  5. Grayfer, E.D., Makotchenko, V.G., Nazarov, A.S., Kim, S.-J., and Fedorov, V.E., Russ. Chem. Rev., 2011, vol. 80, no. 8, pp. 751–770. https://doi.org/10.1070/RC2011v080n08ABEH004181 

    Article  CAS  Google Scholar 

  6. Katsnelson, M.I., Graphene: Carbon in Two Dimensions, New York: Cambridge Univ. Press, 2012.

    Book  Google Scholar 

  7. Novoselov, K.S., Jiang, D., Schedin, F., Khotkevich, V.V., Morozov, S.V., and Geim, A.K., Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 30, pp. 10451–10453. https://doi.org/10.1073/pnas.0502848102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Novoselov, K.S., Usp. Fiz. Nauk, 2011, vol. 181, ID 1299. https://doi.org/10.3367/UFNr.0181.201112f.1299

    Article  Google Scholar 

  9. An, X., Simmons, T., Shah, R., Wolfe, Ch., Lewis, K.M., Washington, M., Nayak, S.K., Talapatra, S., and Ka, S., Nano Lett., 2010, vol. 10, no. 11, ID 42954301. https://doi.org/10.1021/nl903557p

    Article  CAS  Google Scholar 

  10. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N., Nat. Nanotechnol., 2008, vol. 3, no. 9, ID 563568. https://doi.org/10.1038/nnano.2008.215

    Article  CAS  Google Scholar 

  11. Sun, G., Li, X., Qu, Y., Zhang, Y., Wang, X., Yan, H., and Zhang, Y., Mater. Lett., 2008, vol. 62, nos. 4–5, pp. 703–706. https://doi.org/10.1016/j.matlet.2007.06.035

    Article  CAS  Google Scholar 

  12. Pentsak, E.O., Kashin, A.S., Polynski, M.V., Kvashnina, K.O., Glatzel, P., and Ananikov, V.P., Chem. Sci., 2015, no. 6, pp. 3302–3313. https://doi.org/10.1039/C5SC00802F

    Article  Google Scholar 

  13. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hong, B.H., Ahn, J.-H., Kim, J.M., Zirath, H., van Wees, B.J., Vander Zant, H., Occhipinti, L., DiMatteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Löfwander, T., and Kinaret, J., Nanoscale, 2015, vol. 7, no. 15, pp. 4598–4810. https://doi.org/10.1039/C4NR01600A

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee, A.N., Glob. J. Nanomed., 2016, vol. 1, no. 1, ID 555552. https://doi.org/10.19080/GJN.2016.01.555552

    Article  Google Scholar 

  15. Aleksenko, A.G., Grafen (Graphene), Moscow: Laboratoriya Znanii, 2014.

    Google Scholar 

  16. Lisichkin, G.V., Olenin, A.Yu., and Kulakova, I.I., Khimiya poverkhnosti neorganicheskikh nanochastits (Chemistry of the Inorganic Nanoparticle Surface), Moscow: Tekhnosfera, 2021.

    Google Scholar 

  17. Mao, H.Y., Laurent, S., Chen, W., Akhavan, O., and Imani, M., Chem. Rev., 2013, vol. 113, no. 5, pp. 3407–3424. https://doi.org/10.1021/cr300335p

    Article  CAS  PubMed  Google Scholar 

  18. Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 5696, pp. 666–669. https://doi.org/10.1039/C4NR01600A

    Article  CAS  Google Scholar 

  19. Hass, J., de Heer, W.A., and Conrad, E.H., J. Phys.: Cond. Matter., 2008, vol. 20, no. 32, pp. 323202–323229. https://doi.org/10.1088/0953-8984/20/32/323202

    Article  CAS  Google Scholar 

  20. Balandin, A.A., Ghosh, S., Bao, W.Z., Galizo, I., Tewedebrhan, D., Miao, F., and Lao, C.N., Nano Lett., 2008, vol. 8, no. 3, pp. 902–907. https://doi.org/10.1021/nl0731872

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh, S., Calizo, I., Tewedebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N., Appl. Phys. Lett., 2008, vol. 92, no. 15, pp. 151911–151913. https://doi.org/10.1063/1.2907977

    Article  CAS  Google Scholar 

  22. Lee, C., Wei, X.D., Kysar, J.W., and Hone, J., Science, 2008, vol. 321, pp. 385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  23. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Science, 2006, vol. 320, no. 5881, ID 1308. https://doi.org/10.1126/science.1156965

    Article  CAS  Google Scholar 

  24. Kumar, R., Mehta, B.R., Bhatnagar, M., Ravi, S., Mahapatra Salkalachen, S., and Jhawar, P., Nanoscale Res. Lett., 2014, vol. 9, ID 349. https://doi.org/10.1186/1556-276X-9-349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stoller, M.D., Park, S., Zhu, Y., An, J., and Ruoff, R.S., Nano Lett., 2008, vol. 8, no. 10, pp. 3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  PubMed  Google Scholar 

  26. Hass, J., Feng, R., Li, T., Li, X., Zong, Z., de Heer, W.A., First, P.N., and Conrad, E.H., Appl. Phys. Lett., 2006, vol. 89, pp. 143106–143109. https://doi.org/10.1063/1.2358299

    Article  CAS  Google Scholar 

  27. Rollings, E., Gweon, G.H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A.V., First, P.N., de Heer, W.A., and Lanzara, A., J. Phys. Chem. Solids, 2006, vol. 67, pp. 2172–2177. https://doi.org/10.1016/j.jpcs.2006.05.010

    Article  CAS  Google Scholar 

  28. Gubin, S.P. and Tkachev, S.V., Radioelektron. Nanosist. Inform. Tekhnol., 2010, vol. 2, nos. 1–2, pp. 99–136.

    Google Scholar 

  29. Gubin, S.P. and Tkachev, S.V., Grafen i rodstvennye nanoformy ugleroda (Graphene and Related Carbon Nanoforms), Moscow: URSS, 2019.

    Google Scholar 

  30. Veca, L.M., Meziani, M.J., Wang, W., Wang, X., Lu, F., Zhang, P., Lin, Y., Fee, R., Connell, J.W., and Sun, Y.-P., Adv. Mater., 2009, vol. 21, pp. 2088–2092. https://doi.org/10.1002/adma.200802317

    Article  CAS  Google Scholar 

  31. Osváth, Z., Darabont, Al., Nemes-Incze, P., Horváth, E., Horváth, Z.E., and Biró, L.P., Carbon, 2007, vol. 5, pp. 3022–3026. https://doi.org/10.1016/j.carbon.2007.09.033

    Article  CAS  Google Scholar 

  32. Pykhova, N.V., Negutorov, N.V., Zhanakhova, A.N., and Prutskov, A.Yu., Butlerov Commun., 2019, vol. 58, no. 4, pp. 102–103. https://doi.org/10.37952/ROI-jbc-01/19-58-4-102 

    Article  Google Scholar 

  33. Rakov, E.G., Nanotrubki i fullereny (Nanotubes and Fullerenes), Moscow: Logos, 2006.

    Google Scholar 

  34. Kim, W.S., Moon, S.Y., Bang, S.Y., Choi, B.G., Ham, H., Sekino, T., and Shim, K.B., Appl. Phys. Lett., 2009, vol. 95, no. 8, ID 083103. https://doi.org/10.1063/1.3213350

    Article  CAS  Google Scholar 

  35. Kim, K., Sussman, A., and Zettl, A., ACS Nano, 2010, vol. 4, no. 3, pp. 1362–1366. https://doi.org/10.1021/nn901782g

    Article  CAS  PubMed  Google Scholar 

  36. Terrones, M., ACS Nano, 2010, vol. 4, no. 4, pp. 1775–1781. https://doi.org/10.1021/nn1006607

    Article  CAS  PubMed  Google Scholar 

  37. Kosynkin, D.V., Higginbotham, F.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., and Tour, J.M., Nature (London), 2009, vol. 458, pp. 872–876. https://doi.org/10.1038/nature07872

    Article  CAS  Google Scholar 

  38. Sutter, P.W., Flege, J.I., and Sutter, E.A., Nat. Mater., 2008, vol. 7, no. 5, pp. 406–411. https://doi.org/10.1038/nmat2166

    Article  CAS  PubMed  Google Scholar 

  39. Robinson, J., Weng, X., Trumbull, K., Cavalero, R., Wetherington, M., Frantz, E., LaBella, M., Hughes, Z., Fanton, M., and Snyder, D., ACS Nano, 2010, vol. 4, no. 1, pp. 153–158. https://doi.org/10.1021/nn901248j 

    Article  CAS  PubMed  Google Scholar 

  40. Tetlow, H., Posthumade, B.J., Ford, I.J., Vvedensky, D.D., Coraux, J., and Kantorovich, L., Phys. Rep., 2014, vol. 542, no. 3, pp. 195–295. https://doi.org/10.1016/j.physrep.2014.03.003

    Article  CAS  Google Scholar 

  41. Paredes, J.I., Villar-Rodi, S., Martinez-Alonso, A., and Tascon, J.M.D., Langmuir, 2008, vol. 24, no. 19, pp. 10560–10564. https://doi.org/10.1021/la801744a

    Article  CAS  PubMed  Google Scholar 

  42. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleihammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Carbon, 2007, vol. 45, no. 7, pp. 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  43. Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., Hwang, W.-F., and Tour, J.M., J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16201–16206. https://doi.org/10.1021/ja806499

    Article  CAS  PubMed  Google Scholar 

  44. Wang, G., Yang, J., Park, J., Gou, X., Wang, B., Liu, H., and Yao, J., J. Phys. Chem. C, 2008, vol. 112, no. 22, pp. 8192–8195. https://doi.org/10.1021/jp710931h

    Article  CAS  Google Scholar 

  45. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y., Kim, K.S., Özyilmaz, B., Ahn, J., Hong, B.H., and Iijima, S., Nat. Nanotech., 2010, vol. 5, pp. 574–578. https://doi.org/10.1038/nnano.2010.13/2

    Article  CAS  Google Scholar 

  46. Carbon Nanomaterials Source Book: Graphene, Fullerenes, Nanotubes, and Nanodiamonds, Sattler, K.D., Ed., USA: CRC, 2016.

    Google Scholar 

  47. Tkachev, S.V., Buslaeva, E.Yu., Naumkin, A.V., Kotova, S.I., Laure, I.V., and Gubin, S.P., Inorg. Mater., 2012, vol. 48, no. 8, pp. 796–802. https://doi.org/10.1134/S0020168512080158 

    Article  CAS  Google Scholar 

  48. Rakov, E.G., Tun, N.M., and Nguyen, H.V., Vse Mater. Entsikl. Sprav., 2013, no. 8, pp. 2–10.

    Google Scholar 

  49. Rakov, E.G., Tun, N.M., and Stulov, V.G., Abstracts of Papers, Nauchnaya sessiya NIYaU MIFI (Scientific Session of National Research Nuclear University Moscow Engineering Physics Institute), 2014, vol. 1, p. 15

  50. Lyu, Sh.T., Troshkina, I.D., and Rakov, E.G., J. Phys. Chem., 2016, vol. 90, no. 11, pp. 2275–2279. https://doi.org/10.1134/S0036024416110169 

    Article  CAS  Google Scholar 

  51. Patent PCT/US 026766, Publ. 2012.

  52. Boulanger, N., Kuzenkova, A.S., Iakunkov, A., Romanchuk, A.Y., Trigub, A.L., Egorov, A.V., Bauters, S., Amidani, L., Retegan, M., Kvashnina, K.O., Kalmykov, S.N., and Talyzin, A.V., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 40, pp. 45122–45135. https://doi.org/10.1021/acsami.0c11122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuzenkova, A.S., Romanchuk, A.Y., Trigub, A.L., Maslakov, K.I., Egorov, A.V., Amidani, L., Kittrell, C., Kvashnina, K.O., Tour, J.M., Talyzin, A.V., and Kalmykov, S.N., Carbon, 2020, vol. 158, pp. 291–302. https://doi.org/10.1016/j.carbon.2019.10.003

    Article  CAS  Google Scholar 

  54. Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., and Zhang, J., Energy Environ. Sci., 2014, vol. 7, pp. 1564–1596. https://doi.org/10.1039/c3ee43385d

    Article  CAS  Google Scholar 

  55. Xu, X., Jiang, X.-Y., Jiao, F.-P., Chen, X.-Q., and Yu, J.-G., J. Taiwan Inst. Chem. Eng., 2018, vol. 85, pp. 106–114. https://doi.org/10.1016/j.jtice.2017.12.024

    Article  CAS  Google Scholar 

  56. Cohen-Tanugi, D. and Grossman, J.C., Nano Lett., 2012, vol. 12, no. 7, pp. 3602–3608. https://doi.org/10.1021/nl3012853

    Article  CAS  PubMed  Google Scholar 

  57. Zan, R., Ramasse, Q.M., Bangert, U., and Novoselov, K.S., Nano Lett., 2012, vol. 12, pp. 3936–3940. https://doi.org/10.1021/nl300985q

    Article  CAS  PubMed  Google Scholar 

  58. Chandler, D.L., How to Create Selective Holes in Graphene, MITNewsOffice (25 February 2014). https://news.mit.edu/2014/how-to-create-selective-holes-in-graphene-0225

  59. Lapshin, R.V., Appl. Surf. Sci., 2016, vol. 360, pp. 451–460. https://doi.org/10.1016/j.apsusc.2015.09.222

    Article  CAS  Google Scholar 

  60. Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K., and Dekker, C., Na no Lett., 2010, vol. 10, pp. 3163–3167. https://doi.org/10.1021/nl102069z

    Article  CAS  Google Scholar 

  61. Reisner, W., Pedersen, J.N., and Austin, R.H., Rep. Prog. Phys., 2012, vol. 75, no. 10, ID 106601. https://doi.org/10.1088/0034-4885/75/10/106601

    Article  CAS  PubMed  Google Scholar 

  62. Guan, W., Li, S.X., and Reed, M.A., Nanotechnology, 2014, vol. 25, no. 12. https://doi.org/10.1088/0957-4484/25/12/122001

    Article  CAS  Google Scholar 

  63. Seo, D.H., Pineda, S., Fang, J., Gozukara, Y., Yick, S., Bendavid, A., Lam, S.K.H., Murdock, A.T., Murphy, A.B., Han, Z.J., and Ostrikov, K., Nat. Commun., 2017, vol. 8, no. 1, ID 14217. https://doi.org/10.1038/ncomms14217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chernova, E.A., Abstracts of Papers, Chetvertogo mezhdistsiplinarnogo nauchnogo foruma c mezhdunarodnym uchastiem “Novye materialy i perspektivnye tekhnologii” (Proc. Fourth Interdisciplinary Scientific Forum with Int. Participation “New Materials and Perspective Technologies”), Moscow: Budi-Vudi, 2019, p. 279

  65. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., and Geim, A.K., Science, 2012, vol. 335, no. 6067, pp. 442–444. https://doi.org/10.1126/science.1211694

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Y. and Chung, T.-S., Curr. Opin. Chem. Eng., 2017, vol. 16, pp. 9–15. https://doi.org/10.1016/j.coche.2017.03.002

    Article  Google Scholar 

  67. Wang, Z., Ma, C., Xu, C., Sinquefield, S.A., Shofner, M.L., and Nair, S., Nat. Sustain., 2021, vol. 4, no. 5, pp. 402–408. https://doi.org/10.1038/s41893-020-00674-3

    Article  Google Scholar 

  68. Chernova, E.A., Petukhov, D.I., Kapitanova, O.O., Boytsova, O.V., Lukashin, A.V., and Eliseev, A.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, pp. 614–622. https://doi.org/10.17586/2220-8054-2018-9-5-614-621

    Article  CAS  Google Scholar 

  69. Chernova, E.A., Bermeshev, M.A., Petukhov, D.I., Boytsova, O.V., Lukashin, A.V., and Eliseev, A.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 2, pp. 252–258. https://doi.org/10.17586/2220-8054-2018-9-2-252-258

    Article  CAS  Google Scholar 

  70. Patent RU 2626645, Publ. 2017.

  71. Patent RU 2720247, Publ. 2020.

  72. Patent RU 2730320, Publ. 2020.

  73. Fathizadeh, M., Tien, H.N., Khivantsev, K., Chen, J.-T., and Yu, M., Mater. Chem. A, 2017, vol. 5, no. 39, pp. 20860–20866. https://doi.org/10.1039/c7ta06307e

    Article  CAS  Google Scholar 

  74. Sun, P., Zhu, M., Wang, K., Zhong, M.G., Wei, J., Wu, D., Xu, Z., and Zhu, H., ACS Nano, 2013, vol. 7, no. 1, pp. 428–437. https://doi.org/10.1021/nn304471w

    Article  CAS  PubMed  Google Scholar 

  75. Sun, P., Liu, H., Wang, K., Zhong, M., Wu, D., and Zhu, H., J. Phys. Chem. C, 2014, vol. 118, no. 33, pp. 19396–19401. https://doi.org/10.1021/jp504921p

    Article  CAS  Google Scholar 

  76. Zunita, M., Irawanti, R., Koesmawat, T.I., Lugito, G., and Wenten, I.G., Chem. Eng. Trans., 2020, vol. 82, pp. 415–420. https://doi.org/10.3303/CET2082070

    Article  Google Scholar 

  77. Davydov, S.Yu. and Posrednik, O.V., Tech. Phys., 2017, vol. 62, no. 4, pp. 656–659. https://doi.org/10.1134/S1063784217040065

    Article  CAS  Google Scholar 

  78. Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D., and Zhang, L., Nano-Micro Lett., 2016, vol. 8, no. 2, pp. 95–119. https://doi.org/10.1007/s40820-015-0073-1

    Article  CAS  Google Scholar 

  79. Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., and Novoselov, K.S., Nat. Mater., 2007, vol. 6, no. 9, pp. 652–655. https://doi.org/10.1038/nmat1967

    Article  CAS  PubMed  Google Scholar 

  80. Bogue, R., Sensor Rev., 2014, vol. 34, no. 1, pp. 1–8. https://doi.org/10.1108/Sr-03-2013

    Article  Google Scholar 

  81. Zhang, H., Fan, L., Dong, H., Zhang, P., Nie, K., Zhong, J., Li, Y., Guo, J., and Sun, X., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 13, pp. 8652–8661. https://doi.org/10.1021/acsami.5b11872

    Article  CAS  PubMed  Google Scholar 

  82. Yuan, W. and Shi, G., J. Mater. Chem. A, 2013, vol. 1, no. 35, pp. 10078–10091. https://doi.org/10.1039/C3TA11774J

    Article  CAS  Google Scholar 

  83. Rani, S., Kumar, M., Garg, R., Sharma, S., and Kumar, D., IEEE Sensors J., 2016, vol. 16, no. 9, pp. 2930–2934. https://doi.org/10.1109/JSEN.2016.2524204

    Article  Google Scholar 

  84. Meng, F.-L., Guo, Z., and Huang, X.-J., Trends Anal. Chem., 2015, vol. 68, pp. 37–47. https://doi.org/10.1016/j.trac.2015.02.008

    Article  CAS  Google Scholar 

  85. Zhang, J., Liu, X., Neri, G., and Pinna, N., Adv. Mater., 2016, vol. 28, no. 5, pp. 795–831. https://doi.org/10.1002/adma.201503825

    Article  CAS  PubMed  Google Scholar 

  86. Varghese, S.S., Lonkar, S., Singh, K.K., Swaminathan, S., and Abdala, A., Sens. Actuators B: Chemical, 2015, vol. 218, pp. 160–183. https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  87. Yuan, W., Liu, A., Huang, L., Li, C., and Shi, G., Sens. Actuators B: Chemical, 2015, vol. 218, pp. 160–183. https://doi.org/10.1016/j.snb.2015.04.062

    Article  CAS  Google Scholar 

  88. Yuan, W., Liu, A., Huang, L., Li, C., and Shi, G., Adv. Mater., 2013, vol. 25, no. 5, pp. 766–771. https://doi.org/10.1155/2014/497384

    Article  CAS  PubMed  Google Scholar 

  89. Bandi, S. and Srivastav, V., in Comprehensive Analytical Chemistry, Elsevier, 2020, vol. 91: Analytical Applications of Graphene for Comprehensive Analytical Chemistry, ch. 7, pp. 149–173. https://doi.org/10.1016/bs.coac.2020.08.006

    Book  Google Scholar 

  90. Bannov, A.G., Prášek, J., Jašek, O., and Zajíčková, L., Sensors, 2017, vol. 17, no. 2, pp. 320–325. https://doi.org/10.3390/s17020320

    Article  CAS  PubMed Central  Google Scholar 

  91. Shao, G., Ovsianytskyi, O., Bekheet, M.F., and Gurlo, A., Chem. Commun., 2020, vol. 56, pp. 450–453. https://doi.org/10.1039/C9CC09092D

    Article  CAS  Google Scholar 

  92. Hosseingholipourasl, A., Ariffin, S.H.S., Al-Otaibi, Y.D., Akbari, E., Hamid, F.K.H., and Koloor, S.S.R., Sensors, 2020, vol. 20, no. 5, pp. 1506–1519. https://doi.org/10.3390/s20051506

    Article  CAS  PubMed Central  Google Scholar 

  93. Kondrashov, I.I., Sokolov, I.V., Rusakov, P.S., Rybin, M.G., Barmin, Al.A., Rizakhanov, R.N., and Obraztsova, E.D., J. Nanophotonics, 2016, vol. 10, no. 1, ID 012522. https://doi.org/10.1117/1.JNP.10.012522

    Article  Google Scholar 

  94. Hu, N., Wang, Y., Chai, J., Gao, R., Yang, Z., Kong, E.S.W., and Zhang, Y., Sens. Actuators B: Chemical, 2012, vol. 163, pp. 107–114. https://doi.org/10.1016/j.snb.2012.01

    Article  CAS  Google Scholar 

  95. Huang, X.L., Hu, N.T., Wang, Y.Y., and Zhang, Y.F., Adv. Mater. Res., 2013, vol. 669, pp. 79–84. https://doi.org/10.4028/www.scientific.net/AMR.669

    Article  Google Scholar 

  96. Huang, X.L., Hu, N.T., Zhang, L.L., Wei, L.M., Wei, H., and Zhang, Y.F., Synth. Met., 2013, vol. 185, pp. 25–30. https://doi.org/10.1016/j.synthmet.2013.09.034

    Article  CAS  Google Scholar 

  97. Patent RU 2478942, Publ. 2013.

  98. Sysoev, V.I., Okotrub, A.V., Gusel’nikov, A.V., Smirnov, D.A., and Bulusheva, L.G., Phys. Status Solidi B, 2017, vol. 255, no. 1, ID 1700267. https://doi.org/10.1002/pssb.201700267

    Article  CAS  Google Scholar 

  99. Zhang, S., Zhang, D., Sysoev, V.I., Sedelnikova, O.V., Asanov, I.P., Katkov, M.V., Song, H., Okotrub, A.V., Bulusheva, L.G., and Chen, X., RSC Adv., 2014, vol. 4, pp. 46930–46933. https://doi.org/10.1039/C4RA08811E

    Article  CAS  Google Scholar 

  100. Katkov, M.V., Sysoev, V.I., Gusel’nikov, A.V., Asanov, I.P., Bulushevа, L.G., and Okotrub, A.V., Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 444–450. https://doi.org/10.1039/c4cp03552f

    Article  CAS  PubMed  Google Scholar 

  101. Sysoev, V.I., Gusel’nikov, A.V., Katkov, M.V., Asanov, I.P., Bulushevа, L.G., and Okotrub, A.V., J. Nanophotonics, 2016, vol. 10, pp. 012512–012517. https://doi.org/10.1117/1.JNP.10.012512

    Article  Google Scholar 

  102. Sysoev, V.I., Asanov, I.P., Bulushevа, L.G., Shubin, Yu.V., and Okotrub, A.V., Phys. Status Solidi B, 2016, vol. 12, pp. 2492–2498. https://doi.org/10.1002/pssb.201600270

    Article  CAS  Google Scholar 

  103. Sysoev, V.I., Okotrub, A.V., Asanov, I.P., Gevko, P.N., and Bulushevа, L.G., Carbon, 2017, vol. 118, pp. 225–232. https://doi.org/10.1016/j.carbon.2017.03.026

    Article  CAS  Google Scholar 

  104. Iqbal, N., Afzal, A., Cioffi, N., Sabbatini, L., and Torsi, L., Sens. Actuators B, 2013, vol. 181, pp. 9–21. https://doi.org/10.1016/j.snb.2013.01.089

    Article  CAS  Google Scholar 

  105. Yoon, H.J., Jun, D.H., Yang, J.H., Zhou, Z., Yang, S.S., and Cheng, М.М.-C., Sens. Actuators B: Chemical, 2011, vol. 157, pp. 310–313. https://doi.org/10.1016/j.snb.2011.03.035

    Article  CAS  Google Scholar 

  106. Yavari, F., Tian, Z., Thomas, A.V., Ren, V., Cheng, H.-M., and Koratkar, N., Sci. Rep., 2011, vol. 1, ID 116. https://doi.org/10.1038/srep0016

    Article  Google Scholar 

  107. Levedev, A.A., Lebedev, S.P., Novikov, S.N., Davydov, V.Yu., Smirnov, A.N., Litvin, D.P., Makarov, Yu.N., and Levitskii, V.S., Tech. Phys., 2016, vol. 61, no. 3, pp. 453–457.

    Article  Google Scholar 

  108. Sun, J., Muruganathan, M., and Vizuta, H., Sci. Adv., 2016, vol. 2, no. 4, ID E1501518. https://doi.org/10.1126/sciadv.1501518

    Article  CAS  Google Scholar 

  109. Huang, X., Leng, T., Georgiou, T., Abraham, J., Nair, R.R., Novoselov, K.S., and Hu, Z., Sci. Rep., 2018, vol. 8, no. 43, pp. 1–7. https://doi.org/10.1038/s41598-017-16886-1

    Article  CAS  Google Scholar 

  110. Kuzmenko, A.B., van Heumen, E., van der Marel, D., Lerch, P., Blake, P., Novoselov, K.S., and Geim, A.K., Phys. Rev., 2009, vol. 79, ID 115441. https://doi.org/10.1103/PhysRevB.79.11544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lisichkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 9, pp. 1090–1103, January, 2021 https://doi.org/10.31857/S0044461821090012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulakova, I.I., Lisichkin, G.V. Prospects for Using Graphene Nanomaterials: Sorbents, Membranes, and Gas Sensors. Russ J Appl Chem 94, 1177–1188 (2021). https://doi.org/10.1134/S1070427221090019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221090019

Keywords:

Navigation