Skip to main content
Log in

Behavior of Polytrimethylsilylpropyne-Based Composite Membranes in the Course of Continuous and Intermittent Gas Permeability Measurements

  • Membrane Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Two methods for monitoring the physical aging of polymer membranes by gas permeability measurements are compared. The traditional method with intermittent permeability monitoring is compared to the continuous permeability monitoring when the membrane occurs under excess pressure of the permeating gas throughout the experiment. A composite membrane with a thin (1 μm) selective polytrimethylsilylpropyne layer containing 10 wt % organic nanoparticles (porous aromatic frameworks) was taken as an example. The continuous permeability monitoring allows acceleration of the physical aging of the membrane and considerable (by two orders of magnitude) reduction of the experiment time. Fast physical aging in a carbon dioxide stream can be an efficient way to reach equilibrium gas permeability of membranes based on glassy polymers with high void volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Hutchinson, J.M., Prog. Polym. Sci., 1995, vol. 20, pp. 703–760. https://doi.org/10.1016/0079-6700(94)00001-I

    Article  CAS  Google Scholar 

  2. Cangialosi, D., Alegría, A., and Colmenero, J., Prog. Polym. Sci., 2016, vols. 54–55, pp. 128–147. https://doi.org/10.1016/j.progpolymsci.2015.10.005

    Article  CAS  Google Scholar 

  3. Bernardo, P., Bazzarelli, F., Tasselli, F., Clarizia, G., Mason, C.R., Maynard-Atem, L., Budd, P.M., Lanč, M., Pilnáček, K., Vopička, O., Friess, K., Fritsch, D., Yampolskii, Yu.P., Shantarovich, V., and Jansen, J.C., Polymer, 2017, vol. 113, pp. 283–294. https://doi.org/10.1016/j.polymer.2016.10.040

    Article  CAS  Google Scholar 

  4. Low, Z.-X., Budd, P.M., McKeown, N.B., and Patterson, D.A., Chem. Rev., 2018, vol. 118, pp. 5871–5911. https://doi.org/10.1021/acs.chemrev.7b00629

    Article  CAS  PubMed  Google Scholar 

  5. Dorkenoo, K.D. and Pfromm, P.H., Macromolecules, 2000, vol. 33, pp. 3747–3751. https://doi.org/10.1021/ma9921145

    Article  CAS  Google Scholar 

  6. Starannikova, L., Khodzhaeva, V., and Yampolskii, Y., J. Membr. Sci., 2004, vol. 244, pp. 183–191. https://doi.org/10.1016/j.memsci.2004.06.051

    Article  CAS  Google Scholar 

  7. Wang, X.-Y., Willmore, F.T., Raharjo, R.D., Wang, X., Freeman, B.D., Hill, A.J., and Sanchez, I.C., J. Phys. Chem. B, 2006, vol. 110, pp. 16685–16693. https://doi.org/10.1021/jp062233

    Article  CAS  PubMed  Google Scholar 

  8. Kelman, S.D., Rowe, B.W., Bielawski, C.W., Pas, S.J., Hill, A.J., Paul, D.R., and Freeman, B.D., J. Membr. Sci., 2008, vol. 320, pp. 123–134. https://doi.org/10.1016/j.memsci.2008.03.064

    Article  CAS  Google Scholar 

  9. Shao, L., Samseth, J., and Hägg, M.B., J. Appl. Polym. Sci., 2009, vol. 113, pp. 3078–3088. https://doi.org/10.1002/app.30320

    Article  CAS  Google Scholar 

  10. Olivieri, L., Ligi, S., De Angelis, M.G., Cucca, G., and Pettinau, A., Ind. Eng. Chem. Res., 2015, vol. 54, pp. 11199–11211. https://doi.org/10.1021/acs.iecr.5b03251

    Article  CAS  Google Scholar 

  11. Kitchin, M., Teo, J., Konstas, K., Lau, C.H., Sumby, C.J., Thornton, A.W., Doonan, C.J., and Hill, M.R., J. Mater. Chem. A, 2015, vol. 3, pp. 15241–15247. https://doi.org/10.1039/c5ta02286j

    Article  CAS  Google Scholar 

  12. Lau, C.H., Mulet, X., Konstas, K., Doherty, C.M., Sani, M.A., Separovic, F., and Wood, C.D., Angew. Chem. Int. Ed., 2016, vol. 55, pp. 1998–2001. https://doi.org/10.1002/anie.201508070

    Article  CAS  Google Scholar 

  13. Smith, S.J.D., Lau, C.H., Mardel, J.I., Kitchin, M., Konstas, K., Ladewig, B.P., and Hill, M.R., J. Mater. Chem. A, 2016, vol. 4, pp. 10627–10634. https://doi.org/10.1039/c6ta02603f

    Article  CAS  Google Scholar 

  14. Kinoshita, Y., Wakimoto, K., Gibbons, A.H., Isfahani, A.P., Kusuda, H., Sivaniah, E., and Ghalei, B., J. Membr. Sci., 2017, vol. 539, pp. 178–186. https://doi.org/10.1016/j.memsci.2017.05.072

    Article  CAS  Google Scholar 

  15. Cheng, X.Q., Konstas, K., Doherty, C.M., Wood, C.D., Mulet, X., Xie, Z., Ng, D., Hill, M.R., Shao, L., and Lau, C.H., ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 14401−14408. https://doi.org/10.1021/acsami.7b02295

    Article  CAS  PubMed  Google Scholar 

  16. Lau, C.H., Nguyen, P.T., Hill, M.R., Thornton, A.W., Konstas, K., Doherty, C.M., Mulder, R.J., Bourgeois, L., Liu, A.C.Y., Sprouster, D.J., Sullivan, J.P., Bastow, T.J., Hill, A.J., Gin, D.L., and Noble, R.D., Angew. Chem. Int. Ed., 2014, vol. 53, pp. 5322–5326. https://doi.org/10.1002/anie.201402234

    Article  CAS  Google Scholar 

  17. Lau, C.H., Konstas, K., Doherty, C.M., Kanehashi, S., Ozcelik, B., Kentish, S.E., and Hill, M.R., Сhem. Mater., 2015, vol. 27, pp. 4756–4762. https://doi.org/10.1021/acs.chemmater.5b01537

    Article  CAS  Google Scholar 

  18. Volkov, A.V., Bakhtin, D.S., Kulikov, L.A., Terenina, M.V., Golubev, G.S., Bondarenko, G.N., Legkov, S.A., Shandryuk, G.A., Volkov, V.V., Khotimskiy, V.S., Belogorlov, A.A., Maksimov, A.L., and Karakhanov, E.A., J. Membr. Sci., 2016, vol. 517, pp. 80–90. https://doi.org/10.1016/j.memsci.2016.06.033

    Article  CAS  Google Scholar 

  19. Bakhtin, D.S., Kulikov, L.A., Legkov, S.A., Khotimskiy, V.S., Levin, I. S., Borisov, I.L., Maksimov, A.L., Volkov, V.V., Karakhanov, E.A., and Volkov, A.V., J. Membr. Sci., 2018, vol. 554, pp. 211–220. https://doi.org/10.1016/j.memsci.2018.03.001

    Article  CAS  Google Scholar 

  20. Smith, S.J., Hou, R., Konstas, K., Akram, A., Lau, C.H., and Hill, M.R., Acc. Chem. Res., 2020, vol. 53, pp. 1381–1388. https://doi.org/10.1021/acs.accounts.0c00256

    Article  CAS  PubMed  Google Scholar 

  21. Fritsch, D., Merten, P., Heinrich, K., Lazar, M., and Priske, M., J. Membr. Sci., 2012, vol. 401–402, pp. 222–231. https://doi.org/10.1016/j.memsci.2012.02.008

    Article  CAS  Google Scholar 

  22. Bazhenov, S.D., Borisov, I.L., Bakhtin, D.S., Rybakova, A.N., Khotimskiy, V.S., Molchanov, S.P., and Volkov, V.V., Green Energy Environ., 2016, vol. 1, pp. 235–245. https://doi.org/10.1016/j.gee.2016.10.002

    Article  Google Scholar 

  23. Bakhtin, D.S., Kulikov, L.A., Bondarenko, G.N., Vasilevskii, V.P., Maksimov, A.L., and Volkov, A.V., Petrol. Chem., 2018, vol. 58, no. 9, pp. 790–796. https://doi.org/10.1134/S0965544118090037 

    Article  CAS  Google Scholar 

  24. Huang, Y. and Paul, D.R., Polymer, 2004, vol. 45, pp. 8377–8393. https://doi.org/10.1016/j.polymer.2004.10.019

    Article  CAS  Google Scholar 

  25. Murphy, T.M., Langhe, D.S., Ponting, M., Baer, E., Freeman, B.D., and Paul, D.R., Polymer, 2011, vol. 52, pp. 6117–6125. https://doi.org/10.1016/j.polymer.2011.10.061

    Article  CAS  Google Scholar 

  26. Rowe, B.W., Freeman, B.D., and Paul, D.R., Polymer, 2010, vol. 51, pp. 3784−3792. https://doi.org/10.1016/j.polymer.2010.06.004

    Article  CAS  Google Scholar 

  27. Kocherlakota, L.S., Knorr,  D.B., Jr., Foster, L., and Overney, R.M., Polymer, 2012, vol. 53, pp. 2394–2401. https://doi.org/10.1016/j.polymer.2012.03.067

    Article  CAS  Google Scholar 

  28. Ma, C. and Koros, W.J., J. Membr. Sci., 2018, vol. 551, pp. 214–221. https://doi.org/10.1016/j.memsci.2018.01.049

    Article  CAS  Google Scholar 

  29. Kulikov, L.A., Bakhtin, D.S., Polevaya, V.G., Balynin, A.V., Maksimov, A.L., and Volkov, A.V., Russ. J. Appl. Chem., 2019, vol. 92, no. 2, pp. 199–207. https://doi.org/10.1134/S1070427219020058 

    Article  CAS  Google Scholar 

  30. Stern, S.A., Gareis, P.J., Sinclair, T.F., and Mohr, P.H., J. Appl. Polym. Sci., 1963, vol. 7, pp. 2035–2051. https://doi.org/10.1002/app.1963.070070607

    Article  CAS  Google Scholar 

  31. Merkel, T.C., Lin, H., Wei, X., and Baker, R., J. Membr. Sci., 2010, vol. 359, pp. 126–139. https://doi.org/10.1016/j.memsci.2009.10.041

    Article  CAS  Google Scholar 

  32. Priestley, R.D., Soft Matter, 2009, vol. 5, pp. 919–926. https://doi.org/10.1039/b816482g

    Article  CAS  Google Scholar 

  33. Merrick, M.M., Sujanani, R., and Freeman, B.D., Polymer, 2020, vol. 211, ID 123176. https://doi.org/10.1016/j.polymer.2020.123176

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 18-19-00738).

Author information

Authors and Affiliations

Authors

Contributions

A.V. Volkov and A.M. Grekhov, idea and methodology of the study; V.G. Polevaya and L.A. Kulikov, synthesis of polytrimethylsilylpropyne and PAF-11 samples, respectively; D.S. Bakhtin, membrane preparation and characterization by SEM and gas permeability; A.O. Malakhov, S.D. Bazhenov, and D.S. Bakhtin, manuscript preparation; A.O. Malakhov, model processing of experimental data.

Corresponding author

Correspondence to D. S. Bakhtin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 5, pp. 612–620, January, 2021 https://doi.org/10.31857/S0044461821050091

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtin, D.S., Malakhov, A.O., Polevaya, V.G. et al. Behavior of Polytrimethylsilylpropyne-Based Composite Membranes in the Course of Continuous and Intermittent Gas Permeability Measurements. Russ J Appl Chem 94, 616–623 (2021). https://doi.org/10.1134/S1070427221050098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221050098

Keywords:

Navigation