Skip to main content
Log in

Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Activation energies for permeation of polymer nanocomposite membrane have not been reported so far. A trade-off relation between permeability and selectivity shows that as permeability increases, the selectivity decreases. Attempts have been made to see this trade-off relation at relatively higher temperature. It is found that selectivity decreases drastically with increasing temperature. A polymer–matrix composite was prepared by adding silica nanoparticles using casting method. Pure gas permeability was measured using a constant volume–variable pressure method at different temperature ranges from 35 to \(70^{\circ }\hbox {C}\). The Van’t Hoff relation was used to estimate the activation energy for permeation. It is found to decrease as compared with virgin polycarbonate and it increases with kinetic diameter. For the first time, the permeability and selectivity for nanocomposite membrane are reported as a function of temperature. Activation energies for different gases have been calculated for nanocomposite membrane and compared with that of virgin polymer membrane. Decrease in activation energies for permeation (\(E_\mathrm{p}\)) with increasing kinetic diameter has been observed for both the membranes. Selectivity reduces with temperature for both the membranes. Mechanical and thermal properties of nanocomposite membrane have been investigated using a dynamic mechanical analyser and differential scanning calorimetry, respectively. Scanning electron microscopy has been used to study surface morphology. The results show modification in physical properties due to incorporation of silica nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balazs A C, Emrick T and Russell T P 2006 Science 314 1107

    Article  Google Scholar 

  2. Zou H, Wu S and Shen J 2008 Chem. Rev. 108 3893

    Article  Google Scholar 

  3. Wei L, Hu N and Zhang Y 2010 Materials 3 4066

    Article  Google Scholar 

  4. Sharifzadeh E, Ghasemi I and Qarebagh A N 2015 Iran Polym. J. 24 1039

    Article  Google Scholar 

  5. Liu L, Li Y, Weng L, Cui W, Shi H and Wang C 2014 Iran Polym. J. 23 987

    Google Scholar 

  6. Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P et al 2002 Science 296 519

    Article  Google Scholar 

  7. Vijay Y K, Acharya N K, Wate S and Avasthi D K 2004 Int. J. Hydrogen Energy 29 515

  8. Pavlidou S and Papaspyrides C D 2008 Prog. Polym. Sci. 33 1119

  9. Ismail A F, Goh P S, Sanip S M and Aziz M 2009 Sep. Purif. Technol. 70 12

    Article  Google Scholar 

  10. Robeson L M 1991 J. Membr. Sci. 62 165

    Article  Google Scholar 

  11. Sanders D F, Smith Z P, Ribeiro Jr C P, Guo R, McGrath J E, Paul D R et al 2012 J. Membr. Sci. 409–410 232

    Google Scholar 

  12. Bohning M, Hao N and Schonhals A 2013 J. Polym. Sci.: Polym. Phys. 51 1593

    Article  Google Scholar 

  13. Joly C, Samaihi M, Porcar L and Noble R D 1999 Chem. Mater. 11 2331

    Article  Google Scholar 

  14. Barrer R M, Barrie J A and Rogers M G 1963 J. Polym. Sci. A 1 2565

    Google Scholar 

  15. Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P et al 2003 Chem. Mater. 15 109

    Article  Google Scholar 

  16. Kim J H and Lee Y M 2001 J. Membr. Sci. 193 209

    Article  Google Scholar 

  17. Moore T T and Koros W J 2005 J. Mol. Struct. 739 87

    Article  Google Scholar 

  18. Acharya N K, Kulshrestha V, Awasthi K, Kumar R, Jain A K, Singh M et al 2006 Vacuum 81 389

  19. Acharya N K, Kulshrestha V, Awasthi K, Jain A K, Singh M and Vijay Y K 2008 Int. J. Hydrogen Energy 33 327

    Article  Google Scholar 

  20. Ghosal K and Freeman B D 1994 Polym. Adv. Technol. 5 673

    Article  Google Scholar 

  21. Flaconnèche B, Martin J and Klopffer M H 2001 Oil Gas Sci. Technol. 56 245

    Article  Google Scholar 

  22. Costello L M and Koros W J 1992 Ind. Eng. Chem. Res. 31 2708

    Article  Google Scholar 

  23. Komatsuka T and Nagai K 2009 Polym. J. 41 455

    Article  Google Scholar 

  24. Uddin M F and Sun C T 2010 Compos. Sci. Technol. 70 223

    Article  Google Scholar 

  25. Bondar V I, Freeman B D and Pinnau I 2000 J. Polym. Sci. Part B: Polym. Phys. 38 2051

  26. Ahn J, Chung W J, Pinnau I and Guiver M D 2008 J. Membr. Sci. 314 123

    Article  Google Scholar 

  27. Moaddeb M and Koros W J 1997 J. Membr. Sci. 125 143

  28. Morton W E and Hearle J W S 2008 Physical properties of textile fibres (Cambridge, England: Woodhead Publishing Ltd)

Download references

Acknowledgements

The author is thankful to the Department of Science and Technology, New Delhi, for supporting Fast Track young scientist and BOYSCAST scheme during the work (FTP/PS-32/2006 and BY/P-01/10-11). The author is also thankful to Dr Freeman’s group, Chemical Engineering Department, University of Texas at Austin, TX, USA, for providing experimental facilities during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N K Acharya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N.K. Temperature-dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. Bull Mater Sci 40, 537–543 (2017). https://doi.org/10.1007/s12034-017-1395-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1395-z

Keywords

Navigation