Skip to main content
Log in

Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles and Simultaneous Polymer Crosslinking

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Composite membranes with a thin selective layer based on poly[1-trimethylsilyl-1-propyne] (PTMSP) and crosslinked PTMSP containing 10 wt % of nanoparticles of porous aromatic frameworks (PAF-11) have been synthesized and studied. Monitoring of changes in the gas transport characteristics of the membranes under ambient conditions for 7500 h has revealed that for all the samples, the transport characteristics abruptly decrease within the first 1000–2000 h; after that, the mass transfer constants gradually change over time. In the case of a composite membrane with the selective layer based on crosslinked PTMSP and PAF-11 nanoparticles, stable permeability values after 7000 h are 2.1, 3.5, and 12.9 m3/(m2 h atm) for N2, O2, and CO2,respectively (at an ideal selectivity of α(O2/N2) = 1.6 and α(CO2/N2) = 6.1); to date, this is the best published result for thin-film composite membranes based on highly permeable glassy polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2004), 2nd Ed.

    Book  Google Scholar 

  2. Materials Science of Membranes for Gas and Vapor Separation, Ed. by Y. Yampolskii, I. Pinnau, and B. D. Freeman (Wiley, Chichester, 2006).

    Google Scholar 

  3. L. M. Robeson, J. Membr. Sci. 320, 390 (2008).

    Article  CAS  Google Scholar 

  4. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).

    Article  CAS  Google Scholar 

  5. Y. Yampolskii, Macromolecules 45, 3298 (2012).

    Article  CAS  Google Scholar 

  6. L. C. E. Struik, Polym. Eng. Sci. 17, 165 (1977).

    Article  CAS  Google Scholar 

  7. I. M. Hodge, Science 267 (5206), 1945 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. G. B. McKenna, J. Res. Natl. Inst. Stand. Technol. 99, 169 (1994).

    Article  CAS  Google Scholar 

  9. J. M. Hutchinson, Prog. Polym. Sci. 20, 703 (1995).

    Article  CAS  Google Scholar 

  10. Y. P. Yampol’skii, S. M. Shishatskii, V. P. Shantorovich, et al., J. Appl. Polym. Sci. 48, 1935 (1993).

    Article  Google Scholar 

  11. L. Starannikova, V. Khodzhaeva, and Y. Yampolskii, J. Membr. Sci. 244, 183 (2004).

    Article  CAS  Google Scholar 

  12. O. Yu. Rusakova, A. Yu. Alent’ev, and N. V. Kukarkina, Membr. Membr. Tekhnol. 1, 46 (2011).

    Google Scholar 

  13. G. S. Golubev, I. L. Borisov, E. G. Litvinova, et al., Pet. Chem. 57, 498 (2017).

    Article  CAS  Google Scholar 

  14. C. H. Lau, P. T. Nguyen, M. R. Hill, et al., Angew. Chem. 53, 5426 (2014).

    Article  Google Scholar 

  15. C. H. Lau, P. T. Nguyen, M. R. Hill, et al., Angew. Chem., Int. Ed. Engl. 53, 5322 (2014).

    Article  CAS  Google Scholar 

  16. C. H. Lau, K. Konstas, C. M. Doherty, et al., Chem. Mater. 27, 4756 (2015).

    Article  CAS  Google Scholar 

  17. C. H. Lau, K. Konstas, A. W. Thornton, et al., Angew. Chem., Int. Ed. Engl. 54, 2669 (2015).

    Article  CAS  Google Scholar 

  18. M. Kitchin, J. Teo, K. Konstas, et al., J. Mater. Chem. A 3, 15241 (2015).

    Article  CAS  Google Scholar 

  19. A. V. Volkov, D. S. Bakhtin, L. A. Kulikov, et al., J. Membr. Sci. 517, 80 (2016).

    Article  CAS  Google Scholar 

  20. N. Konnertz, Y. Ding, W. J. Harrison, et al., ACS Macro Lett. 5, 528 (2016).

    Article  CAS  Google Scholar 

  21. X. Cheng, X. Jiang, Y. Zhang, et al., ACS Appl. Mater. Interfaces 9, 38877 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. C. H. Lau, X. Mulet, K. Konstas, et al., Angew. Chem., Int. Ed. Engl. 55, 1998 (2016).

    Article  CAS  Google Scholar 

  23. L. Shao, J. Samseth, and M. B. Hagg, J. Membr. Sci. 326, 285 (2009).

    Article  CAS  Google Scholar 

  24. L. Shao, J. Samseth, and M. B. Hagg, J. Appl. Polym. Sci. 113, 3078 (2009).

    Article  CAS  Google Scholar 

  25. S. D. Kelman, R. D. Raharjo, C. W. Bielawski, and B. D. Freeman, Polymer 49, 3029 (2008).

    Article  CAS  Google Scholar 

  26. G. A. Dibrov, V. V. Volkov, V. P. Vasilevsky, et al., J. Membr. Sci. 470, 439 (2014).

    Article  CAS  Google Scholar 

  27. S. D. Bazhenov, I. L. Borisov, D. S. Bakhtin, et al., Green Energy Environ. 1, 235 (2016).

    Google Scholar 

  28. K. D. Dorkenoo and P. H. Pfromm, Macromolecules 33, 3747 (2000).

    Article  CAS  Google Scholar 

  29. B. W. Rowe, B. D. Freeman, and D. R. Paul, Polymer 50, 5565 (2009).

    Article  CAS  Google Scholar 

  30. P. H. Pfromm and W. J. Koros, Polymer 36, 2379 (1995).

    Article  CAS  Google Scholar 

  31. J. M. Scofield, P. A. Gurr, J. Kim, et al., J. Membr. Sci. 499, 191 (2016).

    Article  CAS  Google Scholar 

  32. S. Rafiq, L. Deng, and M. B. Hagg, Chem. Bio. Eng. Rev. 3, 68 (2016).

    CAS  Google Scholar 

  33. X. Y. Chen, S. Kaliaguine, and D. Rodrigue, J. Membr. Sep. Technol. 6, 1 (2017).

    Article  CAS  Google Scholar 

  34. M. Galizia, W. S. Chi, Z. P. Smith, et al., Macromolecules 50, 7809 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank S.A. Legkov for assistance in IR spectroscopy studies, V.S. Khotimskii for PTMCS provided for the research, and the Center for collective use “New Petrochemical Processes, Polymer Composites, and Adhesives” for the equipment provided for the research.This work was performed under the State task to Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences and supported by the Federal Agency for Scientific Organizations of Russia (state registration AAAA–A-18-118011990199-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Bakhtin.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtin, D.S., Kulikov, L.A., Bondarenko, G.N. et al. Stabilization of Gas Transport Properties of Composite Membranes with a Thin PTMSP Selective Layer by Adding Porous Aromatic Framework Nanoparticles and Simultaneous Polymer Crosslinking. Pet. Chem. 58, 790–796 (2018). https://doi.org/10.1134/S0965544118090037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118090037

Keywords:

Navigation