Skip to main content
Log in

Electrochemical Parameters of LiMn2O4 and Li4Ti5O12 Electrodes with Different Types of Binders at Negative Temperatures

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this work we investigated the electrochemical properties of LiMn2O4 and Li4Ti5O12 electrode materials with two different binders: conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) mixed with carboxymethyl cellulose and polyvinylidene fluoride, depending on temperature. The galvanostatic charge/discharge test demonstrated that in the temperature range +25...–30°C the capacity of electrode materials diminishes with decreasing temperature and slightly depends on the type of binder. In addition, the internal resistance (polarization) is lower for electrodes with the conductive poly-3,4-ethylenedioxythiophene:poly(styrene sulfonate)-based binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rodrigues, M.-T.F., Babu, G., Gullapalli, H., Kalaga, K., Sayed, F.N., Kato, K., Joyner, J., and Ajayan, P.M., Nat. Energy, 2017, vol. 2, no. 8, pp. 17108. https://doi.org/10.1038/nenergy.2017.108

    Article  CAS  Google Scholar 

  2. Zhang, W., Sun, X., Tang, Y., Xia, H., Zeng, Y., Qiao, L., Zhu, Z., Lv, Z., Zhang, Y., Ge, X., Xi, S., Wang, Z., Du, Y., and Chen, X., J. Am. Chem. Soc., 2019, vol. 141, no. 36, pp. 14038–14042. https://doi.org/10.1021/jacs.9b05531

    Article  CAS  PubMed  Google Scholar 

  3. Singer, J.P. and Birke, K.P., J. Energy Storage, 2017, vol. 13, pp. 129–136. https://doi.org/10.1016/j.est.2017.07.002

    Article  Google Scholar 

  4. Huang, C.-K., Sakamoto, J.S., Wolfenstine, J., and Surampudi, S., J. Electrochem. Soc., 2000, vol. 147, no. 8, p. 2893. https://doi.org/10.1149/1.1393622

    Article  CAS  Google Scholar 

  5. Smart, M.C., Ratnakumar, B.V., and Surampudi, S., J. Electrochem. Soc., 2002, vol. 149, no. 4, pp. A361–A370. https://doi.org/10.1149/1.1453407

    Article  CAS  Google Scholar 

  6. Xu, K., J. Electrochem. Soc., 2008, vol. 155, no. 10, pp. A733–A738. https://doi.org/10.1149/1.2961055

    Article  CAS  Google Scholar 

  7. Yaakov, D., Gofer, Y., Aurbach, D., and Halalay, I.C., J. Electrochem. Soc., 2010, vol. 157, no. 12, pp. A1383–A1391. https://doi.org/10.1149/1.3507259

    Article  CAS  Google Scholar 

  8. Turk, M.C., Johnson, C.A., and Roy, D., J. Energy Storage, 2018, vol. 20, pp. 395–408. https://doi.org/10.1016/j.est.2018.10.013

    Article  Google Scholar 

  9. Kubicka, M., Bakierska, M., Swietoslawski, M., Chudzik, K., and Molenda, M., Nanomaterials, 2019, vol. 9, pp. 128–135. https://doi.org/10.1007/s12598-014-0418-9

    Article  CAS  Google Scholar 

  10. Pu, Z., Lan, Q., Li, Y., Liu, S., Yu, D., and Lv, X.-J., J. Power Sources, 2019, vol. 437, pp. 226890. https://doi.org/10.1016/j.jpowsour.2019.226890

    Article  CAS  Google Scholar 

  11. Yuan T. Yu, X., Cai, R., Zhou, Y., Shao, Z., J. Power Sources, Elsevier, B.V., 2010, vol. 195, no. 15, pp. 4997–5004. https://doi.org/10.1016/j.jpowsour.2010.02.020

    Article  CAS  Google Scholar 

  12. Marinaro, M., Nobili, F., Birrozzi, A., Eswara Moorthy, S.K., Kaiser, U., Tossici, R., and Marassi, R., Electrochim. Acta, 2013, vol. 109, pp. 207–213. https://doi.org/10.1016/j.electacta.2013.07.093

    Article  CAS  Google Scholar 

  13. Hou, J., Yang, M., Wang, D., and Zhang, J., Adv. Energy Mater., 2020, pp. 1904152. https://doi.org/10.1002/aenm.201904152

    Article  CAS  Google Scholar 

  14. Chou, S.L., Pan, Y., Wang, J.Z., Liu, H.K., and Dou, S.X., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 38, pp. 20347–20359. https://doi.org/10.1039/c4cp02475c

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H., Ling, M., Hencz, L., Ling, H.Y., Li, G., Lin, Z., Liu, G., and Zhang, S., Chem. Rev., 2018, vol. 118, no. 18, pp. 8936–8982. https://doi.org/10.1021/acs.chemrev.8b00241

    Article  CAS  PubMed  Google Scholar 

  16. Bresser D., Buchholz, D., Moretti, A., Varzi, A., and Passerini, S., Energy Environ. Sci., 2018, vol. 11, no. 11, pp. 3096–3127. https://doi.org/10.1039/C8EE00640G

    Article  CAS  Google Scholar 

  17. Ma, Y., Ma, J., and Cui, G., Energy Storage Mater., 2019, vol. 20, pp. 146–175. https://doi.org/10.1016/j.ensm.2018.11.013

    Article  Google Scholar 

  18. Zhang, Z., Zeng, T., Lai, Y., Jia, M., and Li, J., J. Power Sources, 2014, vol. 247, pp. 1–8. https://doi.org/10.1016/j.jpowsour.2013.08.051

    Article  CAS  Google Scholar 

  19. Lee, B.R. and Oh, E.S., J. Phys. Chem. C, 2013, vol. 117, no. 9, pp. 4404–4409. https://doi.org/10.1021/jp311678p

    Article  CAS  Google Scholar 

  20. Buqa, H., Holzapfel, M., Krumeich, F., Veit, C., and Novák, P., J. Power Sources, 2006, vol. 161, no. 1, pp. 617–622. https://doi.org/10.1016/j.jpowsour.2006.03.073

    Article  CAS  Google Scholar 

  21. Yan, X., Zhang, Y., Zhu, K., Gao, Y., Zhang, D., Chen, G., Wang, C., and Wei, Y., J. Power Sources, 2014, vol. 246, pp. 95–102. https://doi.org/10.1016/j.jpowsour.2013.07.072

    Article  CAS  Google Scholar 

  22. Mancini, M., Nobili, F., Tossici, R., and Marassi, R., Electrochim. Acta, 2012, vol. 85, pp. 566–571. https://doi.org/10.1016/j.electacta.2012.08.115

    Article  CAS  Google Scholar 

  23. Yen, J., Chang, C.-C., Lin, Y., Shen, S.-T., and Hong, J.-L., J. Electrochem. Soc., 2013, vol. 160, no. 10, pp. A1811–A1818. https://doi.org/10.1149/2.083310jes

    Article  CAS  Google Scholar 

  24. Eliseeva, S.N., Kamenskii, M.A., Tolstopjatova, E.G., and Kondratiev, V.V., Energies, 2020, vol. 13, no. 9, p. 2163. https://doi.org/10.3390/en13092163

    Article  CAS  Google Scholar 

  25. Vorobeva, K.A., Eliseeva, S.N., Apraksin, R.V., Kamenskii, M.A., Tolstopjatova, E.G., and Kondratiev, V.V., J. Alloys Compd., 2018, vol. 766, pp. 33–44. https://doi.org/10.1016/j.jallcom.2018.06.324

    Article  CAS  Google Scholar 

  26. Eliseeva, S.N., Shkreba, E.V., Kamenskii, M.A., Tolstopjatova, E.G., Holze, R., and Kondratiev, V.V., Solid State Ionics, 2019, vol. 333, pp. 18–29. https://doi.org/10.1016/j.ssi.2019.01.011

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from St. Petersburg State University no. 26455158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Eliseeva.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 248–255, January, 2021 https://doi.org/10.31857/S0044461821020134

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenskii, M.A., Mukhtudinova, A.I., Eliseeva, S.N. et al. Electrochemical Parameters of LiMn2O4 and Li4Ti5O12 Electrodes with Different Types of Binders at Negative Temperatures. Russ J Appl Chem 94, 245–251 (2021). https://doi.org/10.1134/S1070427221020154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020154

Keywords:

Navigation