Skip to main content
Log in

The influence of different pre-treatments of current collectors and variation of the binders on the performance of Li4Ti5O12 anodes for lithium ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In order to optimize the electron transfer between the Li4Ti5O12-based active mass and the current collector, the surface of aluminum foil was modified either by alkaline etching or by a carbon coating. The as-modified aluminum foils were coated with an active mass of Li4Ti5O12 mixed with polyvinylidene fluoride, sodium carboxymethyl cellulose, or polyacrylic acid as binders. Untreated aluminum and copper foils served as reference current collectors. The corrosion reactions of aluminum foil with the applied binder solutions were studied and the electrode structure has been analyzed, depending on the binder. Finally, the electrochemical performance of the prepared electrodes was investigated. Based on these measurements, conclusions concerning the electrical contact between the different current collectors and the active masses were drawn. The energy density of the Li4Ti5O12 electrodes cast on carbon-coated aluminum foils was significantly increased, compared to the corresponding electrodes with a copper current collector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Armand M, Tarascon J (2008) Building better batteries. Nature 451:652–657. doi:10.1038/451652a

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603. doi:10.1021/cm901452z

    Article  CAS  Google Scholar 

  3. Ohzuku T (1995) Zero-Strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142:1431. doi:10.1149/1.2048592

    Article  CAS  Google Scholar 

  4. Sorensen EM, Barry SJ, Jung H, Rondinelli JM, Vaughey JT, Poeppelmeier KR (2006) Three-dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem Mater 18:482–489. doi:10.1021/cm052203y

    Article  CAS  Google Scholar 

  5. Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81–82:300–305. doi:10.1016/S0378-7753(99)00209-8

    Article  Google Scholar 

  6. Kinoshita S, Kotato M, Sakata Y, Ue M, Watanabe Y, Morimoto H et al (2008) Effects of cyclic carbonates as additives to γ-butyrolactone electrolytes for rechargeable lithium cells. J Power Sources 183:755–760. doi:10.1016/j.jpowsour.2008.05.035

    Article  CAS  Google Scholar 

  7. Xu W, Chen X, Wang W, Choi D, Ding F, Zheng J et al (2013) Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries. J Power Sources 236:169–174. doi:10.1016/j.jpowsour.2013.02.055

    Article  CAS  Google Scholar 

  8. Bruce PG, Scrosati B, Tarascon J (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946. doi:10.1002/anie.200702505

    Article  CAS  Google Scholar 

  9. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T et al (2001) Studies of Mg-Substituted Li4−x Mg x Ti5O12 Spinel Electrodes (0 ≤ x ≤ 1) for lithium batteries. J Electrochem Soc 148:A102. doi:10.1149/1.1344523

    Article  CAS  Google Scholar 

  10. Ouyang C, Zhong Z, Lei M (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107–1112. doi:10.1016/j.elecom.2007.01.013

    Article  CAS  Google Scholar 

  11. Fang W, Cheng X, Zuo P, Ma Y, Yin G (2013) A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries. Electrochim Acta 93:173–178. doi:10.1016/j.electacta.2013.01.112

    Article  CAS  Google Scholar 

  12. Zhang C, Zhang Y, Wang J, Wang D, He D, Xia Y (2013) Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery. J Power Sources 236:118–125. doi:10.1016/j.jpowsour.2013.01.135

    Article  CAS  Google Scholar 

  13. Wu D, Cheng Y (2013) Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries. Ionics 19:395–399. doi:10.1007/s11581-012-0777-x

    Article  CAS  Google Scholar 

  14. Wang G, Yan K, Yu Z, Qu M (2010) Facile synthesis and high rate capability of Li4Ti5O12/C composite materials with controllable carbon content. J Appl Electrochem 40:821–831. doi:10.1007/s10800-009-0065-2

    Article  CAS  Google Scholar 

  15. Xu J, Chou S, Gu Q, Liu H, Dou S (2013) The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. J Power Sources 225:172–178. doi:10.1016/j.jpowsour.2012.10.033

    Article  CAS  Google Scholar 

  16. Guerfi A, Kaneko M, Petitclerc M, Mori M, Zaghib K (2007) LiFePO4 water-soluble binder electrode for Li-ion batteries. J Power Sources 163:1047–1052. doi:10.1016/j.jpowsour.2006.09.067

    Article  CAS  Google Scholar 

  17. Lux SF, Balducci A, Schappacher FM, Passerini S, Winter M (2010) (Invited) Na-CMC as Possible Binder for LiFePO4. ECS Trans 25:265–270. doi:10.1149/1.3393862

    Article  CAS  Google Scholar 

  18. Lux SF, Schappacher F, Balducci A, Passerini S, Winter M (2010) Low cost, environmentally benign binders for lithium-ion batteries. J Electrochem Soc 157:A320. doi:10.1149/1.3291976

    Article  CAS  Google Scholar 

  19. Mancini M, Nobili F, Tossici R, Wohlfahrt-Mehrens M, Marassi R (2011) High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J Power Sources 196:9665–9671. doi:10.1016/j.jpowsour.2011.07.028

    Article  CAS  Google Scholar 

  20. Moretti A, Kim G, Bresser D, Renger K, Paillard E, Marassi R et al (2013) Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery. J Power Sources 221:419–426. doi:10.1016/j.jpowsour.2012.07.142

    Article  CAS  Google Scholar 

  21. Kim G, Jeong S, Joost M, Rocca E, Winter M, Passerini S et al (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196:2187–2194. doi:10.1016/j.jpowsour.2010.09.080

    Article  CAS  Google Scholar 

  22. Chou S, Wang J, Liu H, Dou S (2011) Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J Phys Chem C 115:16220–16227. doi:10.1021/jp2039256

    Article  CAS  Google Scholar 

  23. Cai Z, Liang Y, Li W, Xing L, Liao Y (2009) Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. J Power Sources 189:547–551. doi:10.1016/j.jpowsour.2008.10.040

    Article  CAS  Google Scholar 

  24. Chong J, Xun S, Zheng H, Song X, Liu G, Ridgway P et al (2011) A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J Power Sources 196:7707–7714. doi:10.1016/j.jpowsour.2011.04.043

    Article  CAS  Google Scholar 

  25. Lee J, Kim J, Kim YC, Zang DS, Paik U (2008) Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries. Ultramicroscopy 108:1256–1259. doi:10.1016/j.ultramic.2008.04.027

    Article  CAS  Google Scholar 

  26. Pohjalainen E, Räsänen S, Jokinen M, Yliniemi K, Worsley DA, Kuusivaara J et al (2013) Water soluble binder for fabrication of Li4Ti5O12 electrodes. J Power Sources 226:134–139. doi:10.1016/j.jpowsour.2012.10.083

    Article  CAS  Google Scholar 

  27. Myung S, Sasaki Y, Sakurada S, Sun Y, Yashiro H (2009) Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochim Acta 55:288–297. doi:10.1016/j.electacta.2009.08.051

    Article  CAS  Google Scholar 

  28. Kuksenko SP (2013) Aluminum foil as anode material of lithium-ion batteries: effect of electrolyte compositions on cycling parameters. Russ J Electrochem 49:67–75. doi:10.1134/S1023193512110080

    Article  CAS  Google Scholar 

  29. Schultze J, Lohrengel M (2000) Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 45:2499–2513. doi:10.1016/S0013-4686(00)00347-9

    Article  CAS  Google Scholar 

  30. Wu H, Lee E, Wu N, Jow TR (2012) Effects of current collectors on power performance of Li4Ti5O12 anode for Li-ion battery. J Power Sources 197:301–304. doi:10.1016/j.jpowsour.2011.09.014

    Article  CAS  Google Scholar 

  31. Wu H, Wu H, Lee E, Wu N (2010) High-temperature carbon-coated aluminum current collector for enhanced power performance of LiFePO4 electrode of Li-ion batteries. Electrochem Commun 12:488–491. doi:10.1016/j.elecom.2010.01.028

    Article  CAS  Google Scholar 

  32. Striebel K, Shim J, Sierra A, Yang H, Song X, Kostecki R et al (2005) The development of low cost LiFePO4-based high power lithium-ion batteries. J Power Sources 146:33–38. doi:10.1016/j.jpowsour.2005.03.119

    Article  CAS  Google Scholar 

  33. Wan Z, Cai R, Jiang S, Shao Z (2012) Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization. J Mater Chem 22:17773. doi:10.1039/c2jm33346e

    Article  CAS  Google Scholar 

  34. Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L et al (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50:247–254. doi:10.1016/j.electacta.2004.01.090

    Article  CAS  Google Scholar 

  35. Wu YP, Jiang C, Wan C, Holze R (2002) Composite materials of silver and natural graphite as anode with low sensibility to humidity. J Power Sources 112:255–260. doi:10.1016/S0378-7753(02)00392-0

    Article  CAS  Google Scholar 

  36. Fu LJ, Zhang HP, Wu YP, Wu HQ, Holze R (2005) Surface active sites: an important factor affecting the sensitivity of carbon anode material toward humidity. Electrochem Solid State Lett 8:A456–A458. doi:10.1149/1.1990047

    Article  CAS  Google Scholar 

  37. Gnanamuthu RM, Lee CW (2011) Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries. Mater Chem Phys 130:831–834. doi:10.1016/j.matchemphys.2011.08.060

    Article  CAS  Google Scholar 

  38. Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K et al (2001) In situ studies of SEI formation. J Power Sources 97–98:58–66. doi:10.1016/S0378-7753(01)00588-2

    Article  Google Scholar 

  39. Kim TK, Chen W, Chen C, Wang C (2011) Capacity contribution of the interfacial layer on anode current collectors and their electrochemical properties in Lithium ion batteries. MRS Proc. doi:10.1557/opl.2011.1066

    Google Scholar 

  40. He Y, Liu M, Huang Z, Zhang B, Yu Y, Li B et al (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276. doi:10.1016/j.jpowsour.2013.03.141

    Article  CAS  Google Scholar 

  41. Vedder W, Vermilyea DA (1969) Aluminum+ water reaction. Trans Faraday Soc 65:561–585. doi:10.1039/TF9696500561

    Article  CAS  Google Scholar 

  42. Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37:1121–1129. doi:10.1023/A:1014303119055

    Article  CAS  Google Scholar 

  43. Müller B, Schmelich T (1994) Korrosionsinhibierung bzw. -stimulation von Aluminiumpigmenten im alkalisch wäßrigen Medium durch Polyacrylsäuren. Mater Corros 45:637–640. doi:10.1002/maco.19940451202

    Article  Google Scholar 

  44. Müller B (1999) Polymeric corrosion inhibitors for aluminium pigment. React Funct Polym 39:165–177. doi:10.1016/S1381-5148(97)00179-X

    Article  Google Scholar 

  45. Amin MA, EI-Rehim SSA, El-Sherbini EE, Hazzazi OA, Abbas MN (2009) Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: weight loss, polarization, impedance EFM and EDX studies. Corros Sci 51:658–667. doi:10.1016/j.corsci.2008.12.008

    Article  CAS  Google Scholar 

  46. Zhu G, Liu H, Zhuang J, Wang C, Wang Y, Xia Y (2011) Carbon coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ Sci 4:4016–4022. doi:10.1039/C1EE01680F

    Article  CAS  Google Scholar 

  47. Yao XL, Xie S, Nian HQ, Chen CH (2008) Spinel Li4Ti5O12 as reversible anode material down to 0 V. J Alloy Compd 465:375–379. doi:10.1016/j.allcom.2007.10.113

    Article  CAS  Google Scholar 

  48. Park J, Lee S, Kim S, Kim J (2012) Effect of conductive additives on the structural and electrochemical properties of Li4Ti5O12 spinel. Bull Korean Chem Soc 33:4059–4062. doi:10.5012/bkcs.2012.33.12.4059

    Article  CAS  Google Scholar 

  49. Shenouda AY, Murali K (2008) Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J Power Sources 176:332–339. doi:10.1016/j.jpowsour.2007.10.061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the federal ministry of education and research within the framework of the WING program (Project number: 03X0112A) and by the AiF framework (Project number: 16958N). In addition, the authors want to thank D. Kurz and A. Mingers (MPI für Eisenforschung Düsseldorf) for performing the ICP-OES experiments. Furthermore, the authors want to thank Prof. C. Schulz and Dr. H. Wiggers (Institute for Combustion and Gasdynamics (IVG), University of Duisburg-Essen) for providing the biologic VMP 3 potentiostat to measure the CVs of the current collectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wennig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wennig, S., Langklotz, U., Prinz, G.M. et al. The influence of different pre-treatments of current collectors and variation of the binders on the performance of Li4Ti5O12 anodes for lithium ion batteries. J Appl Electrochem 45, 1043–1055 (2015). https://doi.org/10.1007/s10800-015-0878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0878-0

Keywords

Navigation