Skip to main content
Log in

Al-Doped Dumbbell-Like ZnO for Enhanced Ethanol Sensing Performance

  • Specific Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A dumbbell-like Al doped ZnO(AZO) microstructure was successfully synthesized via a facile, controllable and one-pot hydrothermal method. The samples were characterized by XRD, SEM, EDS and TEM. It showed that all the samples present dumbbell-like structure composed of highly crystalline hexagonal wurtzite ZnO. The dumbbell-like structure is formed through the self-assembly of Al-dopled ZnO nanodisks. Gas sensing tests reveal that the Al-doped dumbbell-like ZnO microstructure (3 at %) shows excellent gas sensing response (5.37 for ethanol with 1 ppm) for ethanol with shorter response-recovery time (53 s/21 s). The notable sensing performance could be mainly attributed to the increased content of oxygen vacancy in ZnO due to the Al doping. Thus, the Al-doped dumbbell-like ZnO microstructures could provide an inspiration for the design and preparation of the highly sensitive ethanol gas sensor with the controllable electronic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mirzaei, A., Janghorban, K., et al., Ceram. Int., 2016, vol. 42, pp. 6136–6144. https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  CAS  Google Scholar 

  2. Zhu, D., Fu, Y., et al., Mater. Lett., 2016, vol. 166, pp. 288–291. https://doi.org/10.1016/j.matlet.2015.12.106

    Article  CAS  Google Scholar 

  3. Mhamdi, A., Labidi, A., et al., J. Alloys Compd., 2015, vol. 639, pp. 648–658. https://doi.org/10.1016/j.jallcom.2015.03.205

    Article  CAS  Google Scholar 

  4. Seiyama, T., Kato, A., et al., Anal. Chem.,1962, vol. 34, pp. 1502–1503. https://doi.org/10.1021/ac60191a001

    Article  CAS  Google Scholar 

  5. Guo, J., Zhang, J., et al., Sens. Actuators B Chem., 2014, vol. 199, pp. 339–345. https://doi.org/10.1016/j.snb.2014.04.010

    Article  CAS  Google Scholar 

  6. Liu, J.J., Yu, M.H., et al., Appl. Phys. Lett., 2005, vol. 87, pp. 172505–172508. https://doi.org/10.1063/1.2084321

    Article  CAS  Google Scholar 

  7. Zhu, L., Zhi, M., et al., Phys. Lett., 2006, vol. 88, pp. 113106–113109. https://doi.org/10.1063/1.2185609

    Article  CAS  Google Scholar 

  8. Xu, C., Chun, J., et al., Appl. Phys. Lett., 2007,vol. 88, 90, pp. 083113–083116. https://doi.org/10.1063/1.2431715

    Article  CAS  Google Scholar 

  9. Qu, X. and Jia, D., Mater. Lett., 2009, vol. 63, pp. 412–414. https://doi.org/10.1016/j.matlet.2008.10.069

    Article  CAS  Google Scholar 

  10. Cao, F., Li, C., et al., Appl. Surf. Sci., 2018, vol. 63, no. 447, pp. 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217

    Article  CAS  Google Scholar 

  11. Navale, S.C. and Ravi, V., Sens. Actuators B Chem., 2007, vol. 126, pp. 382–386. https://doi.org/10.1016/j.snb.2007.03.019

    Article  CAS  Google Scholar 

  12. Sahay, P.P. and Nath, R.K., Sens. Actuators B Chem., 2008, vol. 134, pp. 654–659. https://doi.org/10.1016/j.snb.2008.06.006

    Article  CAS  Google Scholar 

  13. Li, L.M., Du, Z.F., et al., Sens. Actuators B Chem., 2010, vol. 147, pp. 165–169. https://doi.org/10.1016/j.snb.2009.12.058

    Article  CAS  Google Scholar 

  14. Badadhe, S.S. and Mulla, I.S., Sens. Actuators B Chem., 2011, vol. 156, pp. 943–948. https://doi.org/10.1016/j.snb.2011.03.010

    Article  CAS  Google Scholar 

  15. Vayssieres, L., Keis, K., et al., J. Phys. Chem. B, 2001, vol. 105, pp. 3350–3352. https://doi.org/10.1021/jp010026s

    Article  CAS  Google Scholar 

  16. Yao, B.D., Chan, Y.F., et al., Appl. Phys. Lett., 2002, vol. 81, pp. 757–759. https://doi.org/10.1063/1.1495878

    Article  CAS  Google Scholar 

  17. Yuan, H. and Zhang, Y., J. Cryst. Growth, 2004, vol. 263, pp. 119–124. https://doi.org/10.1016/j.jcrysgro.2003.11.084

    Article  CAS  Google Scholar 

  18. Heo, Y.W., Varadarajan, V., et al., Appl. Phys. Lett., 2002, vol. 81, pp. 3046–3048. https://doi.org/10.1063/1.1512829

    Article  CAS  Google Scholar 

  19. Greene, L.E., Law, M., et al., Angew. Chem. Int. Ed., 2003, vol. 42, pp. 3031–3034. https://doi.org/10.1002/chin.200339227

    Article  CAS  Google Scholar 

  20. Zhang, X, Liu, J., et al., Adv. Mater., 2016, vol. 28, pp. 795–831. https://doi.org/10.1002/adma.201503825

    Article  CAS  PubMed  Google Scholar 

  21. Lupan, O., Postica, V., et al., Nanoscale, 2018, vol. 10, pp. 14107–14127. https://doi.org/10.1039/c8nr03260b

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J., Sun, L., et al., Chem. Mater., 2002, vol. 14, pp. 4172–4177. https://doi.org/10.1021/cm020077h

    Article  CAS  Google Scholar 

  23. Wen, B.M., Huang, Y.Z., et al., J. Phys. Chem. C, 2008, vol. 112, pp. 106–111. https://doi.org/10.1021/jp076789i

    Article  CAS  Google Scholar 

  24. Smith, A. and Rodriguez-Clemente, R., Thin Solid Films, 1999, vol. 345, pp. 192–196. https://doi.org/10.1016/s0040-6090(99)00167-4

    Article  CAS  Google Scholar 

  25. Morrison, S.R., The Chemical Physics of Surfaces 2nd, New York: Plenum Press, 1999.

    Google Scholar 

  26. Hongsith, Niyom, Wongrat, Ekasiddh, et al., Sens. Actuators B, 2010, vol. 144, pp. 67–72. https://doi.org/10.1016/j.snb.2009.10.037

    Article  CAS  Google Scholar 

  27. Zhang, L.X., Zhao, J.H., et al., Sens. Actuators B, 2011, vol. 158, pp. 144–150. https://doi.org/10.1016/j.snb.2011.05.057

    Article  CAS  Google Scholar 

  28. . Zhang, Y., Xu, J.Q., et al., J. Phys. Chem. C, 2009, vol. 113, pp. 3430–3435. https://doi.org/10.1021/jp8092258

    Article  CAS  Google Scholar 

  29. . Liewhiran, C. and Phanichphant, S., Curr. Appl. Phys. 2008, vol. 8, pp. 336–339. https://doi.org/10.1016/j.cap.2007.10.075

    Article  Google Scholar 

  30. . Paraguay, F., Miki-Yoshid, D.M., et al, Thin Solid Films, 2000, vol. 373, pp. 137–140. https://doi.org/10.1016/s0040-6090(00)01120-2

    Article  Google Scholar 

  31. . Ge, C.Q., Xie, C.S., et al., Mater. Sci. Eng. B Solid,2007, vol. 141, pp. 43-48. https://doi.org/10.1016/j.mseb.2007.05.008

    Article  CAS  Google Scholar 

  32. . Ge, C.Q., Xie, C.S., et al., Mater. Sci. Eng. B: Solid, 2007, vol. 137, pp. 53-58. https://doi.org/10.1016/j.mseb.2006.10.006

    Article  CAS  Google Scholar 

  33. . Si, S.F., Li, C.H., et al., Sens. Actuators B: Chem. 2006, vol. 119, pp. 52-56. https://doi.org/10.1016/j.snb.2005.11.050

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful for Project supported by the Nature Science Foundation of Heilongjiang Province of China (grant no. JJ2019LH0021) and the Youth Doctor Foundation of Harbin university (grant no. HUDF2017105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zan.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, L., Hong-Kun, Z. & Wen-Rui, J. Al-Doped Dumbbell-Like ZnO for Enhanced Ethanol Sensing Performance. Russ J Appl Chem 93, 1960–1967 (2020). https://doi.org/10.1134/S1070427220120204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220120204

Keywords:

Navigation