Skip to main content
Log in

Composites Based on Polyaniline and Activated IR-Pyrolyzed Polyacrylonitrile As Promising Supercapacitor Electrode Materials

  • Composite Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for synthesis of a composite coating based on polyaniline by introducing dispersed IR-pyrolyzed polyacrylonitrile, activated by alkaline treatment, into a polymer matrix. The coating is applied from a suspension in formic acid onto a graphite foil that has been previously subjected to anodic etching to improve the wettability with an electrolyte. The produced composite electrodes for sulfuric acid supercapacitors demonstrate high stability during long-term cycling. The specific electrochemical capacitance was 0.89 F cm–2, which is more than 2 times higher than that for an electrode with a polyaniline coating (0.41 F cm–2) tested under the same conditions. The main contribution to the increase in the total capacitance is made by the double-layer capacitance due to the rise in the active electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Inagaki, M., Konno, H., and Tanaike, O., J. Power Sources, 2010, vol. 195, no. 24, pp. 7880‒7903. https://doi.org/10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  2. Qu, D., J. Power Sources, 2002, vol. 109, pp. 403‒411. https://doi.org/10.1016/S0378-7753(02)00108-8

    Article  CAS  Google Scholar 

  3. Sharma, P. and Bhatti, T.S., Energy Convers. Manage, 2010, vol. 51, pp. 2901‒2912. https://doi.org/10.1016/j.enconman.2010.06.031

    Article  CAS  Google Scholar 

  4. Shulga, Y.M., Baskakov, S.A., Abalyaeva, V.V., Efimov, O.N., Shulga, N.Y., Michtchenko, A., Lartundo-Rojas, L., Moreno-L., A.R., Cabañas-Moreno, J.G., and Vasilets, V.N., J. Power Sources, 2013, vol. 224, pp. 195‒201.

    Article  CAS  Google Scholar 

  5. Zhao, J., Tang, Zh., Qiu, Y., Gao, X., Wan, J., Bi, W., Shen, Sh., and Yang, J., J. Mater. Sci., 2019, vol. 54, pp. 8108‒8120. https://doi.org/10.1007/s10853-018-03288-5

    Article  CAS  Google Scholar 

  6. Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Zh., Zhang, M., Wei, L., Ma, M., Ma, Y., and Chen, Y., Carbon, 2017, vol. 124, no. 1, pp. 64‒71.

    Article  CAS  Google Scholar 

  7. Ioannidou, O. and Zabaniotou, A., Renewable Sustainable Energy Rev., 2007, vol. 11, pp. 1966–2005. https://doi.org/10.1016/j.rser.2006.03.013

    Article  CAS  Google Scholar 

  8. Khezami, L., Chetouani, A., Taouk, B., and Capart, R., Powder Technol., 2005, vol. 157, pp. 48–56. https://doi.org/10.1016/j.powtec.2005.05.009

    Article  CAS  Google Scholar 

  9. Phan, N.H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., and Nguyen, T.H., Carbon, 2006, vol. 44, pp. 2569–2577. https://doi.org/10.1016/j.carbon.2006.05.048

    Article  CAS  Google Scholar 

  10. Hu, Y., Wang, H., Yang, L., Liu, X., Zhang, B., Liu, Y., Xiao, Y., Zheng, M., Lei, B., Zhang, H., and Fu, H., J. Electrochem. Soc., 2013, vol. 160, no. 6, pp. H321–H326. https://doi.org/10.1149/2.062306jes

    Article  CAS  Google Scholar 

  11. Chen, T., Pan, L., Loh, T.A.J., Chua, D.H.C., Yao, Y., Chen, Q., Li, D., Qin, W., and Sun, Z., Dalton Trans., 2014, vol. 43, pp. 14931–14935. https://doi.org/10.1039/C4DT01223B

    Article  CAS  PubMed  Google Scholar 

  12. Lu, W., Marta, S., Robert F., A.B.M., and Gleb, Y., Adv. Funct. Mater., 2011, vol. 22, pp. 827–834. https://doi.org/10.1002/adfm.201101866

    Article  CAS  Google Scholar 

  13. Shen, W., Fan, W., J. Mater. Chem. A, 2013, vol. 1, pp. 999–1013. https://doi.org/10.1039/C2TA00028H

  14. Efimov, M.N., Sosenkin, V.E., Volfkovich, Yu.M., Vasilev, A.A., Muratov, D.G., Baskakov, S.A., Efimov, O.N., and Karpacheva, G.P., Electrochem. Commun., 2018, vol. 96, pp. 98‒102. https://doi.org/10.1016/j.elecom.2018.10.016

    Article  CAS  Google Scholar 

  15. Savchenko, D.V., Serdan, A.A., Morozov, V.A., Van Tendeloo, G., and Ionov, S.G., New Carbon Mater., 2012, vol. 27, no. 1, pp. 12–18. https://doi.org/10.1016/S1872-5805(12)60001-8

    Article  CAS  Google Scholar 

  16. Efimov, M.N., Vasilev, A.A., Muratov, D.G., Baranchikov, A.E., and Karpacheva, G.P.., J. Environ. Chem. Eng., 2019, vol. 7, no. 6, pp. 103514. https://doi.org/10.1016/J.JECE.2019.103514

    Article  CAS  Google Scholar 

  17. Tzou, K. and Gregory, R.V., Synth. Met., 1992, vol. 1992, pp. 267‒277. https://doi.org/10.1016/0379-6779(92)90367-R

    Article  Google Scholar 

  18. Abalyaeva, V.V., Nikolaeva, G.V., Kabachkov, E.N., and Efimov, O.N., Russ. J. Electrochem., 2019, vol. 55, no. 8, pp. 745–755. https://doi.org/10.1134/S1023193519080020

    Article  CAS  Google Scholar 

  19. Ambrosi, A. and Pumera, M., Chem. Soc. Rev., 2018, vol. 47, pp. 7213–7224. https://doi.org/10.1039/C7CS00811B

    Article  CAS  PubMed  Google Scholar 

  20. Volfkovich, Y.M., Bograchev, D.A., Rychagov, A.Y., Sosenkin, V.E., and Chaika, M.Y., J. Solid State Electrochem., 2015, vol. 19, pp. 2771–2779. https://doi.org/10.1007/s10008-015-2804-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of of the Institute of Petrochemical Synthesis A.V. Topchiev of the Russian Academy of Sciences and the state assignment of the Institute of Problems of Chemical Physics of the Russian Academy of Sciences AAAA-A19-119071190044-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Efimov.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalyaeva, V.V., Nikolaeva, G.V., Efimov, M.N. et al. Composites Based on Polyaniline and Activated IR-Pyrolyzed Polyacrylonitrile As Promising Supercapacitor Electrode Materials. Russ J Appl Chem 93, 1667–1674 (2020). https://doi.org/10.1134/S1070427220110063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220110063

Keywords:

Navigation