Skip to main content
Log in

Supercapacitor Electrode. Formation Based on Thoil-Functionalized Graphene Oxide

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

For energy storage applications, graphene oxide as a unique material was successfully applied to significantly reduce the cost and enhance the yield of manufacturing high performance electrodes. Among the known strategies in improving the material performance as energy storage device, heteroatom functionalization proved to be efficient. Upon any boost in the capacitance of graphene oxide electrodes by the introduction of pseudocapacitive behavior, a functional hybrid system was provided due to the presence of covalent functionalized graphene oxide with boosted capacitance and redox active thiazole derivatives. In this work an efficient nanomaterial, as the electrode for supercapacitors based on 1,3,4-thiadiazole-2,5-dithiol (TDDT) molecules decorated on graphene oxide nanosheets (GO), was synthesized with cost effective, non-complicated and scalable method. 1,3,4-Thiadiazole-2,5-dithiol is covalently grafted onto the graphene oxide nanosheets via 2,4,6-trichloro-1,3,5-triazine (TCT) as cross linker (GO–TCT–TDDT). The fabricated nanomaterials were analyzed structurally and morphologically using energy dispersive X-ray diffraction microanalysis, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. Based on electrochemical outcome, glassy carbon modified with GO–TCT–TDDT in comparison with GO benefit from high charge storage performance for supercapacitor which is marked by a high specific capacitance of 140 F g–1 with superior rate capability of 55.7% if the current density increased from 0.1 to 5 A g–1. Moreover, the evaluation of electrode stability demonstrated an approximate fixedness even after 1000 charge–discharge cycles capacitance. Also, 95% of initial capacitance at 0.5 A g–1 was observed in the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 2.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Aricò, A.S., Bruce, P., Scrosati, B., Tarascon, J.-M., and van Schalkwijk, W., Nat. Mater., 2005, vol. 4, pp. 366–377. https://doi.org/10.1038/nmat1368

    Article  CAS  PubMed  Google Scholar 

  2. Down, M.P., Rowley-Neale, S.J., Smith, G.C., and Banks, C.E., ACS Appl. Energy Mater., 2018, vol. 1, pp. 707–714. https://doi.org/10.1021/acsaem.7b00164

    Article  CAS  Google Scholar 

  3. Lee, W.S.V., Leng, M., Li, M., Huang, X.L., and Xue, J.M., Nano Energy, 2015, vol. 12, pp. 250–257. https://doi.org/10.1016/j.nanoen.2014.12.030

    Article  CAS  Google Scholar 

  4. Kim, B.K., Sy, S., Yu, A., and Zhang, J., In Handbook of Clean Energy Systems, New York: American Cancer Society, 2015. https://doi.org/10.1002/9781118991978.hces112

    Google Scholar 

  5. Li, Y., Zhou, M., Wang, Y., Pan, Q., Gong, Q., Xia, Z., and Li, Y., Carbon, 2019, vol. 147, pp. 519–531. https://doi.org/10.1016/j.carbon.2019.03.030

    Article  CAS  Google Scholar 

  6. Shkolnikov, E.I., Kiseleva, E.A., Vervikishko, D.E., Kochanova, S.A., and Sidorova, E. V., Russ. J. Appl. Chem., 2017, vol. 90, pp. 547–552. https://doi.org/10.1134/S1070427217040097

    Article  CAS  Google Scholar 

  7. Mazloum-Ardakani, M., Mohammadian-Sarcheshmeh, H., Naderi, H., Farbod, F., and Sabaghian, F., J. Energy Storage, 2019, vol. 26, pp. 100998. https://doi.org/10.1016/j.est.2019.100998

    Article  Google Scholar 

  8. Zhang, Z., Huang, H., Yang, X., and Zang, L., J. Phys. Chem. Lett., 2011, vol. 2, pp. 2897–2905. https://doi.org/10.1021/jz201273r

    Article  CAS  Google Scholar 

  9. Tao, Y., Sui, Z.-Y., and Han, B.-H. J. Mater., Chem. A, 2020, vol. 8, pp. 6125–6143. https://doi.org/10.1039/D0TA00154F

    Article  CAS  Google Scholar 

  10. Neto, A.J.P. and Fileti, E.E., J. Phys. Chem. C, 2018, vol. 122, pp. 21824–21832. https://doi.org/10.1021/acs.jpcc.8b07349

    Article  CAS  Google Scholar 

  11. Zhang, L.L., Zhao, S., Tian, X.N., and Zhao, X.S., Langmuir, 2010, vol. 26, pp. 17624–17628. https://doi.org/10.1021/la103413s

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, F., Tang, J., Shinya, N., and Qin, L.-C., Chem. Phys. Lett., 2013, vol. 584, pp. 124–129. https://doi.org/10.1016/j.cplett.2013.08.021

    Article  CAS  Google Scholar 

  13. Zou, Y., Kinloch, I.A., and Dryfe, R.A.W., J. Mater. Chem. A, 2014, vol. 2, pp. 19495–19499. https://doi.org/10.1039/C4TA04076G

    Article  CAS  Google Scholar 

  14. Zarandi, R.F., Rezaei, B., Ghaziaskar, H.S., and Ensafi, A.A., J. Energy Storage, 2020, vol. 29, pp. 101334. https://doi.org/10.1016/j.est.2020.101334

    Article  Google Scholar 

  15. Kannappan, S., Yang, H., Kaliyappan, K., Manian, R.K., Samuthira Pandian, A., Lee, Y.S., Jang, J.H., and Lu, W., Carbon N. Y., 2018, vol. 134, pp. 326–333. https://doi.org/10.1016/j.carbon.2018.02.036

    Article  CAS  Google Scholar 

  16. Witomska, S., Liu, Z., Czepa, Wå., Aliprandi, A., Pakulski, D., Pawluć, P., Ciesielski, A., and Samorì, P., J. Am. Chem. Soc., 2019, vol. 141, pp. 482–487. https://doi.org/10.1021/jacs.8b11181

    Article  CAS  PubMed  Google Scholar 

  17. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., and Ruoff, R.S., Carbon N. Y., 2007, vol. 45, pp. 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  18. Zhang, K., Zhang, L., Zhao, X.S., and Wu, J., Chem. Mater. CHEM MATER, 2010, vol. 22, pp. 1392–1401. https://doi.org/10.1021/cm902876u

    Article  CAS  Google Scholar 

  19. Song, S., Xue, Y., Feng, L., Elbatal, H., Wang, P., Moorefield, C.N., Newkome, G.R., and Dai, L., Angew. Chemie Int. Ed., 2014, vol. 53, pp. 1415–1419. https://doi.org/10.1002/anie.201309641

    Article  CAS  Google Scholar 

  20. Song, Y., Gao, Y., Rong, H., Wen, H., Sha, Y., Zhang, H., Liu, H.-J., and Liu, Q., Sustain. Energy Fuels, 2018, vol. 2, pp. 803–810. https://doi.org/10.1039/C7SE00543A

    Article  CAS  Google Scholar 

  21. Zhou, F., Tien, H.N., Dong, Q., Xu, W.L., Li, H., Li, S., and Yu, M., J. Memb. Sci., 2019, vol. 573, pp. 184–191. https://doi.org/10.1016/j.memsci.2018.11.080

    Article  CAS  Google Scholar 

  22. Li, J., Zhu, W., Zhang, S., Gao, Q., Li, J., and Zhang, W., Polym. Test., 2019, vol. 76, pp. 232–244. https://doi.org/10.1016/j.polymertesting.2019.03.017

    Article  CAS  Google Scholar 

  23. Song, Y., Hu, Y., Sha, Y., Rong, H., Wen, H., Liu, H.-J., and Liu, Q., Ionics (Kiel), 2019, vol. 25, pp. 2987–2995. https://doi.org/10.1007/s11581-019-02868-y

    Article  CAS  Google Scholar 

  24. Zhan, Y., Wan, X., Long, Z., Fan, Y., and He, Y., Russ. J. Appl. Chem., 2016, vol. 89, pp. 297–303. https://doi.org/10.1134/S1070427216002021X

    Article  CAS  Google Scholar 

  25. Azman, N.H.Nabilah, Lim, H.N., and Sulaiman, Y., Electrochim. Acta, 2016, vol. 188, pp. 785–792. https://doi.org/10.1016/j.electacta.2015.12.019

    Article  CAS  Google Scholar 

  26. Kim, T.-H., Choi, K.-I., Kim, H., Oh, S.H., Koo, J., and Nah, Y.-C., ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 20223–20230. https://doi.org/10.1021/acsami.7b04184

    Article  CAS  PubMed  Google Scholar 

  27. Zheng, B., Chen, T.-W., Xiao, F.-N., Bao, W.-J., and Xia, X.-H., J. Solid State Electrochem., 2013, vol. 17, pp. 1809–1814. https://doi.org/10.1007/s10008-013-2101-8

    Article  CAS  Google Scholar 

  28. Bakhshandeh, M.B. and Kowsari, E., Res. Chem. Intermed., 2020, vol. 46, pp. 2595–2612. https://doi.org/10.1007/s11164-020-04109-8

    Article  CAS  Google Scholar 

  29. He, T.-S., Yu, X.-D., Bai, T.-J., Li, X.-Y., Fu, Y.-R., and Cai, K.-D., Ionics (Kiel), 2020. https://doi.org/10.1007/s11581-020-03529-1

  30. Chen, Z., Jiang, Y., Xin, B., Jiang, S., Liu, Y., and Lin, L., J. Mater. Sci. Mater. Electron., 2020, vol. 31, pp. 5958–5965. https://doi.org/10.1007/s10854-020-03204-1

    Article  CAS  Google Scholar 

  31. Song, W., Zhang, Z., Wan, P., Wang, M., Chen, X., and Mao, C., J. Solid State Electrochem., 2020, vol. 24, pp. 761–770. https://doi.org/10.1007/s10008-019-04492-2

    Article  CAS  Google Scholar 

  32. Pham, M.H., Khazaeli, A., Godbille-Cardona, G., Truica-Marasescu, F., Peppley, B., and Barz, D.P.J., J. Energy Storage, 2020, vol. 28, p. 101210. https://doi.org/10.1016/j.est.2020.101210

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Islamic Azad University, (Marvdasht Branch) and therefore the author would like to express her sincere thanks to authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoomeh Emadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, A., Honarvar, B., Emadi, M. et al. Supercapacitor Electrode. Formation Based on Thoil-Functionalized Graphene Oxide. Russ J Appl Chem 93, 1160–1171 (2020). https://doi.org/10.1134/S107042722008008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722008008X

Keywords:

Navigation