Skip to main content

Advertisement

Log in

Electrode material based on reduced graphene oxide (rGO)/transition metal oxide composites for supercapacitor applications: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The supercapacitor is a modern electrochemical energy storage technology, exhibiting high specific capacitance, long-term cycle stability, rapid charge rates, high power density, and low cost. Nanostructured materials such nanocarbons, metal oxides, graphene nanosheets, and conducting polymers are used for energy storage applications in recent years. The most fascinating features of 2D reduced graphene oxide-based electrode materials, such as high surface area, superior electrical conductivity, good chemical stability, and excellent mechanical behavior, make them suitable material for supercapacitor devices. Also it attributes the enhancement in specific capacitance, excellent cyclic stability, and high energy density of the composite electrodes that are mainly due to the interconnected conductive network of the composite as well as the synergetic effect of the metal oxide and graphene. This review contains the most significant developments in rGO-TMO-based materials for supercapacitor electrodes, depending on the number of metal oxide composites paired with rGO, i.e., metal oxide, binary metal oxide, and ternary metal oxides. The method of synthesis and supercapacitor performances of rGO and transition metal oxide composites are reviewed. Additionally, a comparison of the rGO composite’s synergistic effects on supercapacitor performance in terms of specific capacitance, energy density, power density, rate capability, and cycle stability are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

References

  1. Harish Kumar, Rahul Sharma, Ankita Yadav, Rajni Kumari, Recent advancement made in the field of reduced graphene oxide-based nanocomposites used in the energy storage devices: a review, J. Energy Storage. 33, 102032 (2021). https://doi.org/10.1016/j.est.2020.102032

  2. D.T. Phat, P.M. Thao, N. Van Nghia, L.T. Son, T.V. Thu, N.T. Lan, N.Q. Quyen, N. Van Ky, T. Van Nguyen, Morphology controlled synthesis of battery-type NiCo2O4 supported on nickel foam for high performance hybrid supercapacitors, J. Energy Storage. 33, 102030 (2021). https://doi.org/10.1016/j.est.2020.102030

  3. K. Mohamed Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, M. Victor Antony Raj, Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices, Phys. E Low-Dimensional Syst. Nanostructures. 119, 114033 (2020). https://doi.org/10.1016/j.physe.2020.114033

  4. C.I. Priyadharsini, G. Marimuthu, T. Pazhanivel, P.M. Anbarasan, V. Aroulmoji, V. Siva, L. Mohana, Sol–gel synthesis of Co3O4 nanoparticles as an electrode material for supercapacitor applications. J. Sol-Gel Sci. Technol. 96, 416–422 (2020). https://doi.org/10.1007/s10971-020-05393-x

    Article  CAS  Google Scholar 

  5. G. Luo, H. Li, D. Zhang, L. Gao, T. Lin, A template-free synthesis via alkaline route for Nb2O5/carbon nanotubes composite as pseudo-capacitor material with high-rate performance. Electrochim. Acta. 235, 175–181 (2017). https://doi.org/10.1016/j.electacta.2017.03.112

    Article  CAS  Google Scholar 

  6. W.G. Nunes, R. Vicentini, B.G.A. Freitas, F.E.R. Oliveira, A.M.P. Marque, R.M. Filho, G. Doubek, L.M. Da Silva, H. Zanin, Pseudo-capacitive behavior of multi-walled carbon nanotubes decorated with nickel and manganese (hydr)oxides nanoparticles, J. Energy Storage. 31, 101583 (2020). https://doi.org/10.1016/j.est.2020.101583

  7. D. Xuan, W. Chengyang, C. Mingming, J. Yang, W. Jin, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J. Phys. Chem. C. 113, 2643–2646 (2009). https://doi.org/10.1021/jp8088269

    Article  CAS  Google Scholar 

  8. G. Milczarek, A. Ciszewski, I. Stepniak, Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J. Power Sources. 196, 7882–7885 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.046

    Article  CAS  Google Scholar 

  9. W.H. Low, S.S. Lim, C.W. Siong, C.H. Chia, P.S. Khiew, One dimensional MnV2O6 nanobelts on graphene as outstanding electrode material for high energy density symmetric supercapacitor. Ceram. Int. 47, 9560–9568 (2021). https://doi.org/10.1016/j.ceramint.2020.12.090

    Article  CAS  Google Scholar 

  10. S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A. Sabahi Namini, Q. Van Le, M. Shokouhimehr, M. Shahedi Asl, M. Mohammadi, Transition metal oxide-based electrode materials for flexible supercapacitors: a review, J. Alloys Compd. 857, 158281 (2021). https://doi.org/10.1016/j.jallcom.2020.158281

  11. P. Wang, Y.J. Zhao, L.X. Wen, J.F. Chen, Z.G. Lei, Ultrasound-microwave-assisted synthesis of MnO2 supercapacitor electrode materials. Ind. Eng. Chem. Res. 53, 20116–20123 (2014). https://doi.org/10.1021/ie5025485

    Article  CAS  Google Scholar 

  12. Y.Q. Zhang, L. Li, S.J. Shi, Q.Q. Xiong, X.Y. Zhao, X.L. Wang, C.D. Gu, J.P. Tu, Synthesis of porous Co3O4 nanoflake array and its temperature behavior as pseudo-capacitor electrode. J. Power Sources. 256, 200–205 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.073

    Article  CAS  Google Scholar 

  13. H.Z. Yang, J.P. Zou, Controllable preparation of hierarchical NiO hollow microspheres with high pseudo-capacitance. Trans Nonferrous Met Soc China English Ed. 28, 1808–1818 (2018). https://doi.org/10.1016/S1003-6326(18)64825-3

    Article  CAS  Google Scholar 

  14. J. Huang, S. Yang, Y. Xu, X. Zhou, X. Jiang, N. Shi, D. Cao, J. Yin, G. Wang, Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. J. Electroanal. Chem. 713, 98–102 (2014). https://doi.org/10.1016/j.jelechem.2013.12.009

    Article  CAS  Google Scholar 

  15. J. Rajeswari, P.S. Kishore, B. Viswanathan, T.K. Varadarajan, One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 11, 572–575 (2009). https://doi.org/10.1016/j.elecom.2008.12.050

    Article  CAS  Google Scholar 

  16. J. Zhang, J. Ma, L.L. Zhang, P. Guo, J. Jiang, X.S. Zhao, Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114(13), 608–13,613 (2010). https://doi.org/10.1021/jp105146c

    Article  CAS  Google Scholar 

  17. M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 5, 11462–11470 (2013). https://doi.org/10.1021/am403739g

    Article  CAS  Google Scholar 

  18. S. Suthakaran, S. Dhanapandian, N. Krishnakumar, N. Ponpandian, P. Dhamodharan, M. Anandan, Surfactant-assisted hydrothermal synthesis of Zr doped SnO2 nanoparticles with photocatalytic and supercapacitor applications, Mater. Sci. Semicond. Process. 111, 104982 (2020). https://doi.org/10.1016/j.mssp.2020.104982

  19. A. Ramadoss, S.J. Kim, Improved activity of a graphene-TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon N Y 63, 434–445 (2013). https://doi.org/10.1016/j.carbon.2013.07.006

    Article  CAS  Google Scholar 

  20. Y. Zhang, L. Cheng, L. Zhang, D. Yang, C. Du, L. Wan, J. Chen, M. Xie, Effect of conjugation level on the performance of porphyrin polymer based supercapacitors, J. Energy Storage. 34, 102018 (2021). https://doi.org/10.1016/j.est.2020.102018

  21. S. Khamlich, Z. Abdullaev, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. J. Electrochimica Acta 303, 246–256 (2019). https://doi.org/10.1016/j.apsusc.2017.02.095

    Article  CAS  Google Scholar 

  22. B.K. Saikia, S.M. Benoy, M. Bora, J. Tamuly, M. Pandey, D. Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel. 282, 118796 (2020). https://doi.org/10.1016/j.fuel.2020.118796

  23. S. Korkmaz, A. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications, J. Energy Storage. 27, 101038 (2020). https://doi.org/10.1016/j.est.2019.101038

  24. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci. 4, 2826–2830 (2011). https://doi.org/10.1039/c1ee01198g

    Article  CAS  Google Scholar 

  25. H. Wang, Q. Fu, C. Pan, Green mass synthesis of graphene oxide and its MnO2 composite for high performance supercapacitor. Electrochim Acta 312, 11–21 (2019). https://doi.org/10.1016/j.electacta.2019.04.178

    Article  CAS  Google Scholar 

  26. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J Inorg Organomet Polym Mater 28, 2046–2055 (2018). https://doi.org/10.1007/s10904-018-0873-0

    Article  CAS  Google Scholar 

  27. R. Kumar, E. Joanni, R.K. Singh, D.P. Singh, S.A. Moshkalev, Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. J. Progress in Energy and Combustion Science 67, 115–157 (2018). https://doi.org/10.1016/j.pecs.2018.03.001

    Article  Google Scholar 

  28. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G.K. Kamal, K. Kar, A. Matsuda, Heteroatom doped graphene engineering for energy storage and conversion. Mater Today 39, 47–65 (2020). https://doi.org/10.1016/j.mattod.2020.04.010

    Article  CAS  Google Scholar 

  29. R. Kumar, R.K. Singh, P.K. Dubey, P. Kumar, R.S. Tiwari, I.K. Oh, Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. J Nanopart Res 15, 1847 (2013). https://doi.org/10.1007/s11051-013-1847-3

    Article  Google Scholar 

  30. Rajesh Kumar, Sumanta Sahoo, Ednan Joanni, Rajesh Kumar Singh, Ram Manohar Yadav, Rajiv Kumar, Verma, Dinesh Pratap Singh, Wai Kian Tan, Angel Pérez del Pino, Stanislav A. Moshkalev, and Atsunori Matsuda, A review on synthesis of graphene, h-BN and MoS2 for energy storage, applications: recent progress and perspectives, J. Nano Research 12 (11), 2655–2694, 2019. https://doi.org/10.1007/s12274-019-2467-8

  31. R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, S.A. Moshkalev, Laser-assisted synthesis, reduction and micro-patterning of graphene recent progress and applications. J Coordination Chemistry Rev 342, 34–79 (2017). https://doi.org/10.1016/j.ccr.2017.03.021

    Article  CAS  Google Scholar 

  32. Rajesh Kumar, Sumanta Sahoo, Ednan Joanni, Rajesh K. Singh, Kamal K. Kar, Microwave as a tool for synthesis of carbon-based electrodes for energy storage, ACS Applied Materials & Interfaces (2021).https://doi.org/10.1021/acsami.1c15934

  33. N. Devi, S. Sahoo, R. Kumar, R.K. Singh, A review of the microwave-assisted synthesis of carbon nanomaterials metal oxides/hydroxides and their composites for energy storage applications. J Nanoscale 13, 11679–11711 (2021). https://doi.org/10.1039/D1NR01134K

    Article  CAS  Google Scholar 

  34. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. J Prog in Energy and Combust Sci 75, 100786 (2019). https://doi.org/10.1016/j.pecs.2019.100786

    Article  Google Scholar 

  35. N. Cao, Y. Zhang, Study of Reduced graphene oxide preparation by Hummers’ method and related characterization, J. Nanomater. 2015, 168125 (2015). https://doi.org/10.1155/2015/168125

  36. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 06, 1–18 (2017). https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  37. R. Thangappan, S. Kalaiselvam, A. Elayaperumal, R. Jayavel, M. Arivanandhan, R. Karthikeyan, Y. Hayakawa, Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Trans. 45, 2637–2646 (2016). https://doi.org/10.1039/C5DT04832J

    Article  CAS  Google Scholar 

  38. A. Alkhouzaam, H. Qiblawey, M. Khraisheh, M. Atieh, M. Al-Ghouti, Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram Int 46, 23997–24007 (2020). https://doi.org/10.1016/j.ceramint.2020.06.177

    Article  CAS  Google Scholar 

  39. L. Sun, B. Fugetsu, Mass production of graphene oxide from expanded graphite. Mater. Lett. 109, 207–210 (2013). https://doi.org/10.1016/j.matlet.2013.07.072

    Article  CAS  Google Scholar 

  40. P. Kumar, S. Penta, S.P. Mahapatra, Dielectric properties of graphene oxide synthesized by modified Hummers’ method from graphite powder. Integr Ferroelectr 202, 41–51 (2019). https://doi.org/10.1080/10584587.2019.1674822

    Article  CAS  Google Scholar 

  41. M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, M. Arif, Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications. Mod Electron Mater 3, 110–116 (2017). https://doi.org/10.1016/j.moem.2017.07.002

    Article  Google Scholar 

  42. J. Xu, L. Wu, Y. Liu, J. Zhang, J. Liu, S. Shu, X. Kang, Q. Song, D. Liu, F. Huang, Y. Hu, NiO-rGO composite for supercapacitor electrode, Surfaces and Interfaces. 18, 100420 (2020). https://doi.org/10.1016/j.surfin.2019.100420

  43. Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu, M. Liu, Construction and performance characterization of α-Fe2O3/rGO composite for long-cycling-life supercapacitor anode. ACS Sustain Chem Eng 5, 5067–5074 (2017). https://doi.org/10.1021/acssuschemeng.7b00445

    Article  CAS  Google Scholar 

  44. S. Raj, S.K. Srivastava, P. Kar, P. Roy, In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor. Electrochim Acta 302, 327–337 (2019). https://doi.org/10.1016/j.electacta.2019.02.010

    Article  CAS  Google Scholar 

  45. N.A. Devi, S. Nongthombam, S. Sinha, R. Bhujel, S. Rai, W.I. Singh, P. Dasgupta, B.P. Swain, Investigation of chemical bonding and supercapacitivity properties of Fe3O4-rGO nanocomposites for supercapacitor applications, Diam. Relat. Mater. 104, 107756 (2020). https://doi.org/10.1016/j.diamond.2020.107756

  46. S. Ghasemi, S.R. Hosseini, O. Boore-talari, Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor. Ultrason Sonochem 40, 675–685 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.013

    Article  CAS  Google Scholar 

  47. Y.N. Sudhakar, H. Hemant, S.S. Nitinkumar, P. Poornesh, M. Selvakumar, Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics (Kiel) 23, 1267–1276 (2017). https://doi.org/10.1007/s11581-016-1923-7

    Article  CAS  Google Scholar 

  48. Y. Zhang, M. Liu, S. Sun, L. Yang, The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor, Adv. Compos. Lett. 29, 1–7 (2020). https://doi.org/10.1177/2633366X20909839

  49. F. Du, X. Zuo, Q. Yang, G. Li, Z. Ding, M. Wu, Y. Ma, S. Jin, K. Zhu, Facile hydrothermal reduction synthesis of porous Co3O4 nanosheets@RGO nanocomposite and applied as a supercapacitor electrode with enhanced specific capacitance and excellent cycle stability. Electrochim Acta 222, 976–982 (2016). https://doi.org/10.1016/j.electacta.2016.11.065

    Article  CAS  Google Scholar 

  50. C. Lai, Y. Sun, B. Lin, Synthesis of sandwich-like porous nanostructure of Co3O4-rGO for flexible all-solid-state high-performance asymmetric supercapacitors, Mater. Today. Energy 13, 342–352 (2019). https://doi.org/10.1016/j.mtener.2019.06.008

    Article  Google Scholar 

  51. Y. Chen, X. Zhang, D. Zhang, Y. Ma, One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. J Alloys Compd 511, 251–256 (2012). https://doi.org/10.1016/j.jallcom.2011.09.045

    Article  CAS  Google Scholar 

  52. A. Viswanathan, A.N. Shetty, Reduced graphene oxide/vanadium pentoxide nanocomposite as electrode material for highly rate capable and durable supercapacitors, J. Energy Storage. 27, 101103 (2020). https://doi.org/10.1016/j.est.2019.101103

  53. Z. Wu, Y. Zhu, X. Ji, C.E. Banks, Transition metal oxides as supercapacitor materials. Nanomaterials in Advanced Batteries and Supercapacitors 317–344 (2016). https://doi.org/10.1007/978-3-319-26082-2_9

  54. A.N. Naveen, S. Selladurai, Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173, 290–301 (2015). https://doi.org/10.1016/j.electacta.2015.05.072

    Article  CAS  Google Scholar 

  55. M.B. Askari, P. Salarizadeh, Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. Int J Hydrogen Energy 45, 27482–27491 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.063

    Article  CAS  Google Scholar 

  56. F. Meng, L. Zhao, Y. Zhang, J. Zhai, Y. Li, W. Zhang, Facile synthesis of NiCo2O4/rGO microspheres with high-performance for supercapacitor. Ceram Int 45, 23701–23706 (2019). https://doi.org/10.1016/j.ceramint.2019.08.085

    Article  CAS  Google Scholar 

  57. Z. Wang, Z. Zhu, C. Zhang, C. Xu, C. Chen, Facile synthesis of reduced graphene oxide/NiMn2O4 nanorods hybrid materials for high-performance supercapacitors. Electrochim Acta 230, 438–444 (2017). https://doi.org/10.1016/j.electacta.2017.02.023

    Article  CAS  Google Scholar 

  58. T. Liu, H. Chai, D. Jia, Y. Su, T. Wang, W. Zhou, Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim Acta 180, 998–1006 (2015). https://doi.org/10.1016/j.electacta.2015.07.175

    Article  CAS  Google Scholar 

  59. X. Xu, J. Shen, N. Li, M. Ye, Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance. J. Alloys Compd 616, 58–65 (2014). https://doi.org/10.1016/j.jallcom.2014.07.047

    Article  CAS  Google Scholar 

  60. Y. Yuan, H. Bi, G. He, J. Zhu, H. Chen, A facile hydrothermal synthesis of a MnCo2O4@reduced graphene oxide nanocomposite for application in supercapacitors. Chem Lett 43, 83–85 (2014). https://doi.org/10.1246/cl.130815

    Article  CAS  Google Scholar 

  61. P. He, K. Yang, W. Wang, F. Dong, L. Du, Y. Deng, Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode. Russ J Electrochem 49, 359–364 (2013). https://doi.org/10.1134/S1023193513040101

    Article  CAS  Google Scholar 

  62. A.J.C. Mary, A.C. Bose, Facile synthesis of ZnCo2O4/rGO nanocomposite for effective supercapacitor application. AIP Conf. Proc. 1832, 050093 (2017). https://doi.org/10.1063/1.4980326

  63. M. Isacfranklin, G. Ravi, R. Yuvakkumar, P. Kumar, D. Velauthapillai, B. Saravanakumar, M. Thambidurai, C. Dang, Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceram Int 46, 16291–16297 (2020). https://doi.org/10.1016/j.ceramint.2020.03.186

    Article  CAS  Google Scholar 

  64. Y.Z. Cai, W.Q. Cao, P. He, Y.L. Zhang, M.S. Cao, NiFe2O4 nanoparticles on reduced graphene oxide for supercapacitor electrodes with improved capacitance, Mater. Res. Express. 6, 105535 (2019). https://doi.org/10.1088/2053-1591/ab3fff

  65. C. Zhang, X. Geng, S. Tang, M. Deng, Y. Du, NiCo2O4@rGO hybrid nanostructures on Ni foam as high-performance supercapacitor electrodes. J Mater Chem A 5, 5912–5919 (2017). https://doi.org/10.1039/c7ta00571g

    Article  CAS  Google Scholar 

  66. Z. Gao, L. Zhang, J. Chang, Z. Wang, D. Wu, F. Xu, Y. Guo, K. Jiang, ZnCo2O4-reduced graphene oxide composite with balanced capacitive performance in asymmetric supercapacitors. Appl Surf Sci 442, 138–147 (2018). https://doi.org/10.1016/j.apsusc.2018.02.152

    Article  CAS  Google Scholar 

  67. Y. Mao, T.J. Park, S.S. Wong, Synthesis of classes of ternary metal oxide nanostructures, Chem. Commun. 46, 5721–5735 (2005). https://doi.org/10.1039/b509960a

  68. D. Chen, Q. Wang, R. Wang, G. Shen, Ternary oxide nanostructured materials for supercapacitors: a review. J Mater Chem A 3, 10158–10173 (2015). https://doi.org/10.1039/c4ta06923d

    Article  CAS  Google Scholar 

  69. J. Wu, Q. Zhou, L. Lin, Q. Luo, Lu, Ternary Co3O4/NiO/reduced graphene oxide hybrid composites with improved electrochemical properties. Ceram Int 45, 15394–15399 (2019). https://doi.org/10.1016/j.ceramint.2019.05.035

    Article  CAS  Google Scholar 

  70. S. Prabhu, S. Sohila, D. Navaneethan, S. Harish, M. Navaneethan, R. Ramesh, Three dimensional flower-like CuO/Co3O4/r-GO heterostructure for high-performance asymmetric supercapacitors, J. Alloys Compd. 846, 156439 (2020). https://doi.org/10.1016/j.jallcom.2020.156439

  71. Z. Wang, K. Zhao, S. Lu, W. Xu, Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors, Electrochim. Acta. 353, 136599 (2020). https://doi.org/10.1016/j.electacta.2020.136599

  72. R. Kumar, S.M. Youssry, H.M. Soe, M.M. Abdel-Galeil, G. Kawamura, A. Matsuda, Honeycomb-like open-edged reduced-graphene-oxide-enclosed transition metal oxides (NiO/Co3O4) as improved electrode materials for high-performance supercapacitor, J. Energy Storage. 30, 101539 (2020). https://doi.org/10.1016/j.est.2020.101539

  73. G.S. Kumar, S.A. Reddy, H. Maseed, N.R. Reddy, Facile hydrothermal synthesis of ternary CeO2-SnO2/rGO nanocomposite for supercapacitor application. Funct. Mater. Lett. 13, 2051005 (2020). https://doi.org/10.1142/S1793604720510054

  74. M. Geerthana, S. Prabhu, S. Harish, M. Navaneethan, R. Ramesh, M. Selvaraj, Design and preparation of ternary α-Fe2O3/SnO2/rGO nanocomposite as an electrode material for supercapacitor. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-06128-6

  75. K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv 4, 23485–23491 (2014). https://doi.org/10.1039/c4ra02107j

    Article  CAS  Google Scholar 

  76. V.M. Vimuna, A.R. Athira, K. V. Dinesh Babu, T.S. Xavier, Simultaneous stirring and microwave assisted synthesis of nanoflakes MnO2/rGO composite electrode material for symmetric supercapacitor with enhanced electrochemical performance. Diam. Relat. Mater. 110, 108129 (2020). https://doi.org/10.1016/j.diamond.2020.108129

  77. Y. Zhang, Y. Shen, X. Xie, W. Du, L. Kang, Y. Wang, X. Sun, Z. Li, B. Wang, One-step synthesis of the reduced graphene oxide@NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis. Mater. Des. 196, 109111 (2020). https://doi.org/10.1016/j.matdes.2020.109111

  78. Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F.Y. Su, P. Zhou, Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Adv 6, 46,548-46,557 (2016). https://doi.org/10.1039/c6ra04998b

    Article  CAS  Google Scholar 

  79. D. Zhang, W. Zou, Decorating reduced graphene oxide with Co3O4 hollow spheres and their application in supercapacitor materials. Curr Appl Phys 13, 1796–1800 (2013). https://doi.org/10.1016/j.cap.2013.07.001

    Article  Google Scholar 

  80. Z. Huang, S. Li, Z. Li, J. Li, G. Zhang, L. Cao, H. Liu, Mn3O4 nanoflakes/rGO composites with moderate pore size and (O=)C-O-Mn bond for enhanced supercapacitor performance. J. Alloys Compd. 830, 154637 (2020). https://doi.org/10.1016/j.jallcom.2020.154637

  81. A.K. Das, S. Sahoo, P. Arunachalam, S. Zhang, J.J. Shim, Facile synthesis of Fe3O4 nanorod decorated reduced graphene oxide (RGO) for supercapacitor application. RSC Adv 6, 107,057-107,064 (2016). https://doi.org/10.1039/c6ra23665k

    Article  CAS  Google Scholar 

  82. X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, H. Liu, S. Dou, Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors. J Alloys Compd. 586, 745–753 (2014). https://doi.org/10.1016/j.jallcom.2013.10.078

    Article  CAS  Google Scholar 

  83. Y. Zhou, X. Zou, Z. Zhao, B. Xiang, Y. Zhang, CoO/rGO composite prepared by a facile direct-flame approach for high-power supercapacitors. Ceram Int 44, 16900–16907 (2018). https://doi.org/10.1016/j.ceramint.2018.06.128

    Article  CAS  Google Scholar 

  84. S. Sundriyal, M. Sharma, A. Kaur, S. Mishra, A. Deep, Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications. J Mater Sci Mater Electron 29, 12754–12764 (2018). https://doi.org/10.1007/s10854-018-9393-5

    Article  CAS  Google Scholar 

  85. Y. Hu, C. Guan, Q. Ke, Z.F. Yow, C. Cheng, J. Wang, Hybrid Fe2O3 nanoparticle clusters/rGO paper as an effective negative electrode for flexible supercapacitors. Chem Mater 28, 7296–7303 (2016). https://doi.org/10.1021/acs.chemmater.6b02585

    Article  CAS  Google Scholar 

  86. I.Y.Y. Bu, R. Huang, Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram Int 43, 45–50 (2017). https://doi.org/10.1016/j.ceramint.2016.08.136

    Article  CAS  Google Scholar 

  87. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, A. Deep, Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte. J Alloys Compd 790, 377–387 (2019). https://doi.org/10.1016/j.jallcom.2019.03.150

    Article  CAS  Google Scholar 

  88. Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang, S. Xing, Rapid production of Mn3O4/rGO as an efficient electrode material for supercapacitor by flame plasma. Materials (Basel). 11, 881 (2018). /https://doi.org/10.3390/ma11060881

  89. L.J. Xie, J.F. Wu, C.M. Chen, C.M. Zhang, L. Wan, J.L. Wang, Q.Q. Kong, C.X. Lv, K.X. Li, G.H. Sun, A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. J Power Sources. 242, 148–156 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.081

    Article  CAS  Google Scholar 

  90. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes shape and coupling effects. J Mater Chem 22, 19161–19167 (2012). https://doi.org/10.1039/c2jm33177b

    Article  CAS  Google Scholar 

  91. D. Govindarajan, V.U. Shankar, R. Gopalakrishnan, Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods. J Mater Sci Mater Electron 30, 16,142-16,155 (2019). https://doi.org/10.1007/s10854-019-01984-9

    Article  CAS  Google Scholar 

  92. C.Y. Foo, A. Sumboja, D.J.H. Tan, J. Wang, P.S. Lee, Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 4, 1400236 (2014). https://doi.org/10.1002/aenm.201400236

  93. I.S. El-Hallag, M.N. El-Nahass, S.M. Youssry, R. Kumar, M.M. Abdel-Galeil, A. Matsud, Facile in-situ simultaneous electrochemical reduction and deposition of reduced graphene oxide embedded palladium nanoparticles as high performance electrode materials for supercapacitor with excellent rate capability. J Electrochimica Acta 314, 124–134 (2019). https://doi.org/10.1016/j.electacta.2019.05.065

    Article  CAS  Google Scholar 

  94. R. Kumar, S. Sahoo, W.K. Tan, G. Kawamura, A. Matsud, K.K. Kar, Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. J of Energy Storage 40, 102724 (2021). https://doi.org/10.1016/j.est.2021.102724

    Article  Google Scholar 

  95. R. Kumar, S.M. Youssry, M.M. Abdel-Galeil, A. Matsuda, One-pot synthesis of reduced graphene oxide nanosheets anchored ZnO nanoparticles via microwave approach for electrochemical performance as supercapacitor electrode. J Mater Sci Mater Electron 31, 15456–15465 (2020). https://doi.org/10.1007/s10854-020-04108-w

    Article  CAS  Google Scholar 

  96. S.M. Youssry, M.N. El-Nahass, R. Kumar, I.S. El-Hallag, W.K. Tan, A. Matsuda, Superior performance of Ni(OH)2-ErGO@ NF electrode materials as pseudocapacitance using electrochemical deposition via two simple successive steps. J of Energy Storage 30, 101485 (2020). https://doi.org/10.1016/j.est.2020.101485

    Article  Google Scholar 

  97. R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9, 10 (2017). https://doi.org/10.1021/acsami.6b14704

    Article  CAS  Google Scholar 

  98. R. Kumar, Rajesh Kumar Singh, Pawan Kumar Dubey, Dinesh Pratap Singh, Ram Manohar Yada, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead–CNT–graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 7, 27 (2015). https://doi.org/10.1021/acsami.5b04336

    Article  CAS  Google Scholar 

  99. H.-J. RajeshKumar, SungjinPark, AnchalSrivastava, KwonOh, Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities. Carbon 79, 192–202 (2014). https://doi.org/10.1016/j.carbon.2014.07.059

    Article  CAS  Google Scholar 

  100. R. Kumar, R.K. Singh, R. Savu, P.K. Dubeyc, P. Kumar, S.A. Moshkalev, Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Advances 6(32), 26612–26620 (2016). https://doi.org/10.1039/C6RA00426A

    Article  CAS  Google Scholar 

  101. R. Kumar, S. Youssry, Kyaw Zay Ya, Wai Kian Tan, Go Kawamura, Atsunori Matsuda Kawamura, Atsunori Matsuda, Microwave-assisted synthesis of Mn3O4-Fe2O3/Fe3O4@rGO ternary hybrids and electrochemical performance for supercapacitor electrode. J. Diamond and Related Materials 101, 107622 (2020). https://doi.org/10.1016/j.diamond.2019.107622

    Article  CAS  Google Scholar 

  102. R. Kumar, R. Matsuo, K. Kishida, M.M. Abdel-Galeila, Y. Suda, A. Matsuda, Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. J Electrochimica Acta 303, 246–256 (2019). https://doi.org/10.1016/j.electacta.2019.02.084

    Article  CAS  Google Scholar 

  103. X. Wang, W.S. Liu, X. Lu, P.S. Lee, Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide-reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J Mater Chem 22, 23114–23119 (2012). https://doi.org/10.1039/c2jm35307e

    Article  CAS  Google Scholar 

  104. Q. Li, C. Lu, C. Chen, L. Xie, Y. Liu, Y. Li, Q. Kong, H. Wang, Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor. Energy Storage Mater 8, 59–67 (2017). https://doi.org/10.1016/j.ensm.2017.04.002

    Article  Google Scholar 

  105. Y.Z. Cai, W.Q. Cao, Y.L. Zhang, P. He, J.C. Shu, M.S. Cao, Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. J. Alloys Compd. 811, 152011 (2019). https://doi.org/10.1016/j.jallcom.2019.152011

  106. A. Chebil, O. Kuzgun, C. Dridi, M. Ates, High power density supercapacitor devices based on nickel foam–coated rGO/MnCo2O4 nanocomposites. Ionics (Kiel) 26, 5725–5735 (2020). https://doi.org/10.1007/s11581-020-03713-3

    Article  CAS  Google Scholar 

  107. A. Singh, S.K. Ojha, A.K. Ojha, Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors. Synth. Met. 259, 116215 (2020). https://doi.org/10.1016/j.synthmet.2019.116215

  108. Y. Li, J. Jian, Y. Fan, H. Wang, L. Yu, G. Cheng, J. Zhou, M. Sun, Facile one-pot synthesis of a NiMoO4/reduced graphene oxide composite as a pseudocapacitor with superior performance. RSC Adv 6, 69627–69633 (2016). https://doi.org/10.1039/c6ra13955h

    Article  CAS  Google Scholar 

  109. Y. Luo, H. Zhang, D. Guo, J. Ma, Q. Li, L. Chen, T. Wang, Porous NiCo2O4-reduced graphene oxide (rGO) composite with superior capacitance retention for supercapacitors. Electrochim Acta 132, 332–337 (2014). https://doi.org/10.1016/j.electacta.2014.03.179

    Article  CAS  Google Scholar 

  110. G. He, L. Wang, H. Chen, X. Sun, X. Wang, Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. Mater Lett 98, 164–167 (2013). https://doi.org/10.1016/j.matlet.2013.02.035

    Article  CAS  Google Scholar 

  111. L. Ma, X. Shen, H. Zhou, Z. Ji, K. Chen, G. Zhu, High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem Eng J 262, 980–988 (2015). https://doi.org/10.1016/j.cej.2014.10.079

    Article  CAS  Google Scholar 

  112. B. Rani, N.K. Sahu, Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor. Diam. Relat. Mater. 108, 107978 (2020). https://doi.org/10.1016/j.diamond.2020.107978

  113. C.Y. Foo, H.N. Lim, M.A.B. Mahdi, K.F. Chong, N.M. Huang, High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials. J Phys Chem C 120, 21202–21210 (2016). https://doi.org/10.1021/acs.jpcc.6b05930

    Article  CAS  Google Scholar 

  114. Y. Xu, H. Xuan, J. Gao, T. Liang, X. Han, J. Yang, Y. Zhang, H. Li, P. Han, Y. Du, Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance. J Mater Sci 53, 8483–8498 (2018). https://doi.org/10.1007/s10853-018-2171-1

    Article  CAS  Google Scholar 

Download references

Funding

R. Kumar was provided financial support by Periyar University in the form of University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thangappan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Thangappan, R. Electrode material based on reduced graphene oxide (rGO)/transition metal oxide composites for supercapacitor applications: a review. emergent mater. 5, 1881–1897 (2022). https://doi.org/10.1007/s42247-021-00339-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00339-7

Keywords

Navigation