Skip to main content
Log in

Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The inluence of the heat treatment conditions and of the time of hydrothermal treatment at 210°С on the phase composition and size of crystallites and nanoparticles of lanthanum orthophosphate (LaPO4) was considered. The heating conditions in the course of hydrothermal synthesis of LaPO4 influence the structural transition of lanthanum orthophosphate of rhabdophane structure into the phase of monazite structure, and also the particle morphology and crystallite size. The phase of monazite structure with the crystallite size of approximately 12 nm without rhabdophane impurity is formed after hydrothermal treatment at 210°С for 30 min in the case of microwave heating of the hydrothermal fluid. When using external heating of autoclaves, at the same temperature inside the autoclave, the mean size of the crystallites of the monazite phase formed is 17 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Hikichi, Y. and Tsuyoshi, N., J. Am. Ceram. Soc., 1987, vol. 70, pp. 252–253. https://doi.org/10.1111/j.1151-2916.1987.tb04890.x

    Article  Google Scholar 

  2. Gausse, C., Szenknect, S., Mesbah, A., Clavier, N., Neumeier, S., and Dacheux, N., Appl. Geochem., 2018, vol. 93, pp. 81–93. https://doi.org/10.1016/j.apgeochem.2018.04.005

    Article  CAS  Google Scholar 

  3. Schlenz, H., Heuser, J., Neumann, A., Schmitz, S., and Bosbach, D., Cryst. Mater., 2013, vol. 228, pp. 113–123. https://doi.org/10.1524/zkri.2013.1597

    Article  CAS  Google Scholar 

  4. Mezentseva, L., Osipov, A., Ugolkov, V., Akatov, A., Doil’nitsyn, V., Maslennikova, T., and Yakovlev, A., J. Nanomed. Res., 2017, vol. 6, no. 1, p. 00145. https://doi.org/10.15406/jnmr.2017.06.00145

    Article  Google Scholar 

  5. Lenz, C., Thorogood, G., Aughterson, R., Ionescu, M., Gregg, D., Davis, D.J., and Lumpkin, G.R., Frontiers Chem., 2019, vol. 7, no. 13, p. 1. https://doi.org/10.3389/fchem.2019.00013

    Article  CAS  Google Scholar 

  6. Woodward, J., Kennel, S.J., Stuckey, A., Osborne, D., Wall, J., and Rondinone, A.J., Bioconjug. Chem., 2011, vol. 22, pp. 766–776. https://doi.org/10.1021/bc100574f

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L., Chen, H., Wang, L., Liu, T., Yeh, J., and Lu, G., Nanotechnol. Sci. Appl., 2010, vol. 3, pp. 159–170. https://doi.org/10.2147/NSA.S7462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barreto, J.A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., and Spiccia, L., Adv. Mater., 2011, vol. 23, pp. 18–40. https://doi.org/10.1002/adma.201100140

    Article  CAS  Google Scholar 

  9. Grechanovsky, A.E., Eremin, N.N., and Urusov, V.S., Phys. Solid State, 2013, vol. 55, pp. 1929–1935. https://doi.org/10.1134/S1063783413090138

    Article  CAS  Google Scholar 

  10. McLaughlin, M.F., Robertson, D., Pevsner, P.H., Wall, J.S., Mirzadeh, S., and Kennel, S.J., Cancer Biother. Radiopharm., 2014, vol. 29, pp. 34–41. https://doi.org/10.1089/cbr.2013.1546

    Article  CAS  PubMed  Google Scholar 

  11. Arinicheva, Y., Clavier, N., Neumeier, S., Podor, R., Bukaemskiy, A., Klinkenberg, M., Roth, G., Dacheux, N., and Bosbach, D., J. Eur. Ceram. Soc., 2018, vol. 38, no. 1, pp. 227–234. https://doi.org/10.1016/j.jeurceramsoc.2017.08.008

    Article  CAS  Google Scholar 

  12. Kenges, K.M., Proskurina, O.V., Danilovich, D.P., Aldabergenov, M.K., and Gusarov, V.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 9, pp. 1539–1548. https://doi.org/10.1134/S0044461818090141

    Article  Google Scholar 

  13. Davis, J.B., Marshall, D.B., Morgan, P.E.D., J. Eur. Ceram. Soc., 2000, vol. 20, no. 5, pp. 583–587. https://doi.org/10.1016/S0955-2219(99)00256-3

    Article  CAS  Google Scholar 

  14. Shijina, K., Sankar, S., Midhun, M., Firozkhan, M., Nair, B.N., Warrier, K.G., and Hareesh, U.N.S., New J. Chem., 2016, vol. 40, no. 6, pp. 5333–5337. https://doi.org/10.1039/C5NJ03290C

    Article  CAS  Google Scholar 

  15. Zainurul, A.Z., Rusop, M., and Abdullah, S., Adv. Mater. Res., 2012, vol. 626, pp. 302–305. https://doi.org/10.4028/www.scientific.net/AMR.626.302

    Article  CAS  Google Scholar 

  16. Kenges, K.M., Proskurina, O.V., Danilovich, D.P., Aldabergenov, M.K., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 7, pp. 1047–1054. https://doi.org/10.1134/S1070427217070047

    Article  CAS  Google Scholar 

  17. Yu, C., Yu, M., Li, C., Liu, X., Yang, J., Yang, P., and Lin, J., J. Solid State Chem., 2009, vol. 182, pp. 339–347. https://doi.org/10.1016/j.jssc.2008.10.023

    Article  CAS  Google Scholar 

  18. Yang, P., Quan, Z., Li, C., Hou, Z., Wang, W., and Lin, J., J. Solid State Chem., 2009, vol. 182, pp. 1045–1054. https://doi.org/10.1016/j.jssc.2009.01.024

    Article  CAS  Google Scholar 

  19. Proskurina, O.V., Sivtsov, E.V., Enikeeva, M.O., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Nanosystems: Phys. Chem. Math., 2019, vol. 10, no. 2, pp. 206–214. https://doi.org/10.17586/2220-8054-2019-10-2-206-214

    Article  CAS  Google Scholar 

  20. Wang, R., Pan, W., Chen, J., Fang, M., and Meng, J., Mater. Lett., 2002, vol. 57, pp. 822–827. https://doi.org/10.1016/S0167-577X(02)00880-7

    Article  CAS  Google Scholar 

  21. Yao, W.T. and Yu, S.H., Int. J. Nanotechnol., 2007, vol. 4, pp. 129–162. https://doi.org/10.1504/IJNT.2007.012320

    Article  CAS  Google Scholar 

  22. Ruigang, W., Wei, P., Jian, C., Minghao, F., Zhenzhu, C., and Yongming, L., Mater. Chem. Phys., 2003, vol. 79, pp. 30–36. https://doi.org/10.1016/S0254-0584(02)00420-0

    Article  Google Scholar 

  23. Kijkowska, R., J. Mater. Sci., 2003, vol. 38, pp. 229–233. https://doi.org/10.1023/A:1021140927187

    Article  CAS  Google Scholar 

  24. Boakye, E.E., Mogilevsky, P., and Hay, R.S., J. Am. Ceram. Soc., 2005, vol. 88, pp. 2740–2746. https://doi.org/10.1111/j.1551-2916.2005.00525.x

    Article  CAS  Google Scholar 

  25. Ahmadzadeh, M.A., Chini, F., and Sadeghi, A., Mater. Des., 2019, vol. 181, p. 108058. https://doi.org/10.1016/j.matdes.2019.108058

    Article  CAS  Google Scholar 

  26. Khan, S. and ten Elshof, J.E., J. Nanomater., 2012, vol. 2012, p. 279810. https://doi.org/10.1155/2012/279810

    Article  CAS  Google Scholar 

  27. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Khoroshilov, A.V., Mezentseva, L.P., and Gusarov, V.V., J. Therm. Anal. Calorim., 2010, vol. 102, pp. 809–811. https://doi.org/10.1007/s10973-010-0866-x

    Article  CAS  Google Scholar 

  28. Li, L., Jiang, W., Pan, H., Xu, X., and Tang, Y., J. Phys. Chem., 2007, vol. 111, pp. 4111–4115. https://doi.org/10.1021/jp068464s

    Article  CAS  Google Scholar 

  29. Sasidharan, S. and Warrier, K., J. Sol–Gel Sci. Technol., 2011, vol. 58, pp. 195–200. https://doi.org/10.1007/s10971-010-2377-4

    Article  CAS  Google Scholar 

  30. Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2007, vol. 33, pp. 169–173. https://doi.org/10.1134/S1087659607020125.

    Article  CAS  Google Scholar 

  31. Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2009, vol. 35, pp. 431–435. https://doi.org/10.1134/S1087659609040130

    Article  CAS  Google Scholar 

  32. Ray, S., Nair, G., Tadge, P., Malvia, N., Rajput, V., Chopra, V., and Dhoble, S.J., J. Luminescence, 2018, vol. 194, pp. 64–71. https://doi.org/10.1016/j.jlumin.2017.10.015

    Article  CAS  Google Scholar 

  33. Zhihao, W., Li, Ji-G., Zhu, Q., Kim Byung-Nam, and Sun, X., Mater. Des., 2017, vol. 126, pp. 115–122. https://doi.org/10.1016/j.matdes.2017.04.036

    Article  CAS  Google Scholar 

  34. Meskin, P.E., Gavrilov, A.I., Maksimov, V.D., Ivanov, V.K., and Churagulov, B.P., Russ. J. Inorg. Chem., 2007, vol. 52, no. 11, pp. 1648–1656. https://doi.org/10.1134/S0036023607110022

    Article  Google Scholar 

  35. Ivanov, V.K., Polezhaeva, O.S., Gil’, D.O., Kopitsa, G.P., and Tret’yakov, Yu.D., Dokl. Chem., 2009, vol. 426, no. 2, pp. 131–133. https://doi.org/10.1134/S0012500809060056

    Article  CAS  Google Scholar 

  36. Meng, L.-Y., Wang, B., Ma, M.-G., and Lin, K.-L., Mater. Today Chem., 2016, vols. 1–2, pp. 63–83. https://doi.org/10.1016/j.mtchem.2016.11.003

    Article  Google Scholar 

  37. Kuznetsova, V.A., Almjasheva, O.V., and Gusarov, V.V., Glass. Phys. Chem., 2009, vol. 35, no. 2, pp. 205–209. https://doi.org/10.1134/S1087659609020138

    Article  CAS  Google Scholar 

  38. Devi, H., Dar, F., Shah, M., Parveen, S., and Wani, Ab.H., Spectrochim. Acta, Part A: Mol. Biomol.Spectrosc., 2019, vol. 213, pp. 337–341. https://doi.org/10.1016/j.saa.2019.01.071

    Article  CAS  Google Scholar 

  39. Schmidt, R., Prado-Gonjal, J., and Morán, E., CRC Concise Encyclopedia of Nanotechnology, 2015, vol. 3, pp. 101–117. https://doi.org/10.3390/inorganics3020101

    Article  CAS  Google Scholar 

  40. Chittaranja, P., Gabashvili, A., Sujata, P., Solomon Jacob, D., Gedanken, A., Landau, A., and Gofer, Y., New J. Chem., 2005, vol. 29, no. 5, pp. 733–739. https://doi.org/10.1039/b415693e

    Article  CAS  Google Scholar 

  41. Mesbah, A., Clavier, N., Elkaim, E., Szenknect, S., and Dacheux, N., J. Solid State Chem., 2017, vol. 249, pp. 221–227. https://doi.org/10.1016/j.jssc.2017.03.004

    Article  CAS  Google Scholar 

  42. Mesbah, A., Clavier, N., Elkaim, E., Gausse, C., Ben Kacem, I., Szenknect, S., and Dacheux, N., Cryst. Growth Des., 2014, vol. 14, pp. 5090–5098. https://doi.org/10.1021/cg500707b

    Article  CAS  Google Scholar 

  43. Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsyn, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28-33. https://doi.org/10.1134/S1070427217010050

    Article  CAS  Google Scholar 

  44. Almjasheva, O.V. and Denisova, T.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, pp. 1–7. https://doi.org/10.1134/S1070363217010017

    Article  CAS  Google Scholar 

  45. Vasilevskaya, A.K., Almjasheva, O.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 12, pp. 2673–2676. https://doi.org/10.1134/S1070363215120014

    Article  CAS  Google Scholar 

  46. Shelyug, A., Mesbah, A., Szenknect, S., Clavier, N., Dacheux, N., and Navrotsky, A., Frontiers Chem., 2018, vol. 6, p. 604. https://doi.org/10.3389/fchem.2018.00604

    Article  CAS  Google Scholar 

  47. Almjasheva, O.V., Nanosystems: Phys. Chem. Math., 2015, vol. 6, no. 5, pp. 697–703. https://doi.org/10.17586/2220-8054-2015-6-5-697-703

    Article  CAS  Google Scholar 

  48. Almjasheva, O.V., Lomanova, N.A., Popkov, V.I., Proskurina, O.V., Tugova, E.A., and Gusarov, V.V. Nanosystems: Phys. Chem. Math., 2019, vol. 10, no. 4, pp. 428–437. https://doi.org/10.17586/2220-8054-2019-10-4-428-437

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

X-ray diffraction studies, scanning electron microscopy, and elemental analysis of the samples were performed using devices of the Engineering Center of the St. Petersburg State Institute of Technology (Technical University).

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 19-33-50056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Enikeeva.

Ethics declarations

V.V. Gusarov is the member of the Editorial Board of Zhurnal Prikladnoi Khimii/Russian Journal of Applied Chemistry. The other authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enikeeva, M.O., Kenges, K.M., Proskurina, O.V. et al. Influence of Hydrothermal Treatment Conditions on the Formation of Lanthanum Orthophosphate Nanoparticles of Monazite Structure. Russ J Appl Chem 93, 540–548 (2020). https://doi.org/10.1134/S1070427220040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220040084

Keywords:

Navigation