Skip to main content
Log in

Aqueous sol–gel synthesis of lanthanum phosphate nano rods starting from lanthanum chloride precursor

  • Original paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aqueous sol–gel technique is reported for synthesizing nanosize, rod shaped lanthanum phosphate particles starting from lanthanum chloride, which is suitable for variety of applications such as machinable ceramics, thermal barrier coatings and luminescent materials. The phosphate particles are having rod like morphology having an overall size in the range 25–100 nm and with an average aspect ratio 4. The morphology is retained even after calcination at 800 °C. The average crystallite size for the as prepared particles was calculated to be 8 nm using Scherrer equation applied on X-ray diffraction (XRD) data. The particles obtained were characterized using photon correlation spectroscopy (PCS), FT-IR spectroscopy, XRD and Electron Microscopy techniques (TEM and SEM). The phase stability was found using thermo gravimetric analysis. The surface wettability monitored using tensiometer through dynamic contact angle method indicated that lanthanum phosphate surface possesses considerable hydrophobic character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kashiwagi D, Takai A, Takubo T, Yamada H, Inoue T, Nagaoka K, Takita Y (2009) J Colloid Interface Sci 332:136–144

    Article  CAS  Google Scholar 

  2. Onoda H, Nariai H, Moriwaki A, Maki H, Motooka I (2002) J Mater Chem 12:1754–1760

    Article  CAS  Google Scholar 

  3. Cao XQ, Vassen R, Stoever D (2004) J Eur Ceram Soc 24:1–10

    Article  CAS  Google Scholar 

  4. Davis JB, Marshall DB, Housley RM, Morgan PED (1998) J Am Ceram Soc 81:2169–2175

    Article  CAS  Google Scholar 

  5. Schuetz P, Caruso F (2002) Chem Mater 14:4509–4516

    Article  CAS  Google Scholar 

  6. Meiser F, Cortez C, Caruso F (2004) Angew Chem Int Ed 43:5954–5957

    Article  CAS  Google Scholar 

  7. Zhang F, Wong SS (2010) ACS Nano 4:99–112

    Article  CAS  Google Scholar 

  8. Hikichi Y, Nomura T (1987) J Am Ceram Soc 70:C252–C253

    Google Scholar 

  9. Narasimha B, Choudhary RNP, Rao KV (1988) J Mater Sci 23:1416–1418

    Article  CAS  Google Scholar 

  10. Hikichi Y, Ota T, Hattori T (1997) Miner J 19:123–130

    Article  CAS  Google Scholar 

  11. Sambasivan S (2000) US pat 6036372

  12. Kitamura N, Amezawa K, Tomii Y, Yamamoto N (2003) Solid State Ionics 162:161–165

    Article  Google Scholar 

  13. Takita Y, Sano K, Muraya T, Nishiguchi H, Kawata N, Ito M, Akbay T, Ishihara T (1998) Appl Catal A 170:23–31

    Article  CAS  Google Scholar 

  14. Li L, Jiang WG, Pan HH, Xu XR, Tang YX, Ming JZ, Xu ZD, Tang RK (2007) J Phys Chem C 111:4111–4115

    Article  CAS  Google Scholar 

  15. Chai ZL, Gao L, Wang C, Zhang HJ, Zheng RK, Webley PA, Wang HT (2009) New J Chem 33:1657–1662

    Article  CAS  Google Scholar 

  16. Fang YP, Xu AW, Song RQ, Zhang HX, You LP, Yu JC, Liu HQ (2003) J Am Chem Soc 125:16025–16034

    Article  CAS  Google Scholar 

  17. Wang RG, Pan W, Chen J, Fang MH, Cao ZZ, Luo YM (2003) Mater Chem Phys 79:30–36

    Article  CAS  Google Scholar 

  18. Buissette V, Moreau M, Gacoin T, Boilot JP, Chane-Ching JY, Le Mercier T (2004) Chem Mater 16:3767–3773

    Article  CAS  Google Scholar 

  19. Buehler G, Feldmann C (2006) Angew Chem Int Ed 45:4864–4867

    Article  CAS  Google Scholar 

  20. Brown SS, Im HJ, Rondinone AJ, Dai S (2005) J Colloid Interface Sci 292:127–132

    Article  CAS  Google Scholar 

  21. Rajesh K, Mukundan P, Pillai PK, Nair VR, Warrier KGK (2004) Chem Mater 16:2700–2705

    Article  CAS  Google Scholar 

  22. Lucas S, Champion E, Bregiroux D, Bernache-Assollant D, Audubert F (2004) J Solid State Chem 177:1302–1311

    Article  CAS  Google Scholar 

  23. Onoda H, Nariai H, Maki H, Motooka I (2002) Mater Chem Phys 73:19–23

    Article  CAS  Google Scholar 

  24. Chen P, Mah TI (1997) J Mater Sci 32:3863–3867

    Article  CAS  Google Scholar 

  25. Rajesh K, Shajesh P, Seidel O, Mukundan P, Warrier KGK (2007) Adv Func Mater 17:1682–1690

    Article  CAS  Google Scholar 

  26. Schindler DW (1974) Science 4139:897–899

    Article  Google Scholar 

  27. Kijowska R, Colewka E, Duszak B (2003) J Mater Sci 38:223–228

    Article  Google Scholar 

  28. Ross SD, Hezel A (1966) Spectrochim Acta 22:1949–1961

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Indian Rare Earths Limited, Mumbai for funding and acknowledgements are due to Dr. V. Mangalaraga, University of Concepcion, Chile for TEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Gopakumar Warrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, S., Warrier, K.G. Aqueous sol–gel synthesis of lanthanum phosphate nano rods starting from lanthanum chloride precursor. J Sol-Gel Sci Technol 58, 195–200 (2011). https://doi.org/10.1007/s10971-010-2377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2377-4

Keywords

Navigation