Skip to main content
Log in

Structure and Properties of Hydrogen Sulfide Sensors Based on Thin Tin Dioxide Films

  • Sorption and Ion Exchange Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Structural, electrical, and gas-sensitive characteristics of thin films (~100 nm) of tin dioxide containing Sb, Au, and Ni impurities in the bulk and dispersed Au clusters on the surface were studied. For the films prepared by magnetron sputtering, the size of SnO2 grains is of the order of 40–125 nm, and introduction of Au in the synthesis step leads to the Au segregation in the form of nanosized inclusions of the second phase. The sensors are highly sensitive to H2S in a wide concentration interval, 0.5–100 ppm. Operation of the sensors in the thermo-cycling mode ensures increased response to low H2S concentrations (<5 ppm) in the cooling cycle. The values of the sensor response remained high in long-term tests (180 days and more).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Malyshev, V.V. and Pislyakov, A.V., J. Anal. Chem., 2014, vol. 69, no. 2, pp. 123–135. https://doi.org/10.1134/S1061934814020105

    Article  CAS  Google Scholar 

  2. Sevast’yanov, E.Y., Maksimova, N.K., Chernikov, Y.V., and Firsov, A.A., Russ. Phys. J., 2012, vol. 55, no. 6, pp. 602–608. https://doi.org/10.1007/s11182-012-9855-9

    Article  CAS  Google Scholar 

  3. Sevastianov, E.Y., Maksimova, N.K., Chernikov, E.V., Sergeichenko, N.V., and Rudov, F.V., Russ. Phys. J., 2016, vol. 59, no. 8, pp. 1198–1205. https://doi.org/10.1007/s11182-016-0891-8

    Article  CAS  Google Scholar 

  4. Gaman, V.I., Sevast’yanov, E.Yu., Maksimova, N.K., Almaev, A.V., and Sergeichenko, N.V., Izv. Vyssh. Uchebn. Zaved., Fizika, 2013, vol. 56, no. 12, pp. 96–102.

    Google Scholar 

  5. Gaman, V.I., Drobot, A.V., Sevast’yanov, E.Y., Maksimova, N.K., and Sergeichenko, N.S., Russ. Phys. J., 2014, vol. 57, no. 3, pp. 334–340. https://doi.org/10.1007/s11182-014-0244-4

    Article  CAS  Google Scholar 

  6. Maksimova, N.K., Sevast’yanov, E.Yu., Sergeichenko, N.V., and Chernikov, E.V., Poluprovodnikovye tonkoplenochnye gazovye sensory (Semiconductor Thin-Film Gas Sensors), Tomsk: NTL, 2016, pp. 135–145.

    Google Scholar 

  7. Maksimova, N.K., Almaev, A.V., Sevastyanov, E.Y., Potekaev, A.I., Chernikov, E.V., Sergeychenko, N.V., Korusenko, P.M., and Nesov, S.N., Coatings, 2019, vol. 9, pp. 423–441. https://doi.org/10.3390/coatings9070423

    Article  CAS  Google Scholar 

  8. Zamyatin, N.V. and Sevast’yanov, E.Yu., Dokl. Tomsk. Gos. Univ. Sist. Upravl. Radioelektron., 2010, no. 1(21), pt. 2, pp. 207–212.

    Google Scholar 

  9. Domashevskaya, E.P., Ryabtsev, S.V., Yurakov, Yu.A., Chuvenkova, O.A., Kashkarov, V.M., Turishchev, S.Yu., Kushev, S.B., and Lukin, A.N., Thin Solid Films, 2007, vol. 515, no. 16, pp. 6350–6355. https://doi.org/10.1016/j.tsf.2006.11.092

    Article  CAS  Google Scholar 

  10. Sundaram, K.B. and Bhagavat, G.K., J. Phys. D: Appl. Phys., 1981, vol. 14, no. 5, pp. 921–925. https://doi.org/10.1088/0022-3727/14/5/025

    Article  CAS  Google Scholar 

  11. Katiyar, R.S., Dawson, P., Hargreave, M.M., and Wilkinson, G.R., J. Phys. C: Solid State Phys., 1971, vol. 4, pp. 2421–2431. https://doi.org/10.1088/0022-3719/4/15/027

    Article  CAS  Google Scholar 

  12. Diéguez, A., Romano-Rodríguez, A., Vilà, A., and Morante, J.R., J. Appl. Phys., 2001, vol. 90, no. 3, pp. 1550–1557. https://doi.org/10.1063/1.1385573

    Article  CAS  Google Scholar 

  13. Singh, G., Thangaraj, R., and Singh, R.C., Ceram. Int., 2016, vol. 42, pp. 4323–4332. https://doi.org/10.1016/j.ceramint.2015.11.111

    Article  CAS  Google Scholar 

  14. Kaur, J., Shah, J., Kotnala, R.K., and Verma, K.Ch., Ceram. Int., 2012, vol. 38, pp. 5563–5570. https://doi.org/10.1016/j.ceramint.2012.03.075

    Article  CAS  Google Scholar 

  15. Potekaev, A.I., Sevast’yanov, E.Yu., Maksimova, N.K., Chernikov, E.V., and Sergeichenko, N.V., Russ. Phys. J., 2017, vol. 60, no. 7, pp. 1094–1098. https://doi.org/10.1007/s11182-017-1183-7

    Article  CAS  Google Scholar 

  16. Oleksenko, L.P., Maksymovych, N.P., Buvailo, A.I., Matushko, I.P., and Dollahon, N., Sens. Actuators B, 2012, vol. 174, pp. 39–44. https://doi.org/10.1016/j.snb.2012.07.079

    Article  CAS  Google Scholar 

  17. Korotcenkov, G. and Cho, B.K., Sens. Actuators B, 2014, vol. 198, pp. 316–341. https://doi.org/10.1016/j.snb.2014.03.069

    Article  CAS  Google Scholar 

  18. Korotcenkov, G., Boris, I., Brinzari, V., Han, S.H., and Cho, B.K., Sens. Actuators B, 2013, vol. 182, pp. 112–124. https://doi.org/10.1016/j.snb.2013.02.103

    Article  CAS  Google Scholar 

  19. Liu, L., Guo, C., Li, S., Wang, L., Dong, Q., and Wei, L., Sens. Actuators B, 2010, vol. 150, pp. 806–810. https://doi.org/10.1016/j.snb.2010.07.022

    Article  CAS  Google Scholar 

  20. Myasnikov, I.A., Sukharev, V.Ya., and Kupriyanov, L.Yu., Poluprovodnikovye sensory v fiziko-khimicheskikh issledovaniyakh (Semiconductor Sensors in Physicochemical Studies), Moscow: Nauka, 1991.

    Google Scholar 

  21. Batzill, M. and Diebold, U., Prog. Surf. Sci., 2005, vol. 79, pp. 47–154. https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  CAS  Google Scholar 

  22. Bañares, M.A. and Wachs, I.E., J. Raman Spectrosc., 2002, vol. 33, pp. 359–380. https://doi.org/10.1002/jrs.866

    Article  CAS  Google Scholar 

  23. Krivetskiy, V.V., Rumyantseva, M.N., and Gaskov, A.M., Russ. Chem. Rev., 2013, vol. 82, no. 10, pp. 917–941. https://doi.org/10.1070/rc2013v082n10abeh004366

    Article  Google Scholar 

  24. Ghimbeu, C.M., Lumbreras, M., Siadat, M., Landschoot, R.C., and Schoonman, J., Sens. Actuators B, 2008, vol. 133, pp. 694–698. https://doi.org/10.1016/j.snb.2008.04.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Biryukov.

Ethics declarations

ACKNOWLEDGMENTS

The authors are grateful to Cand. Sci. (Phys.-Math.), Associate Prof., Deputy Head of Laboratory of New Materials and Perspective Technologies of the Siberian Physicotechnical Institute, Research Tomsk State University V.A. Svetlichnyi for recording the Raman spectra and to I.A. Shulepov for estimating the film composition by Auger electron spectroscopy.

FUNDING

The study was performed within the framework of the government assignment of the Ministry of Education and Science of the Russian Federation (no. 3.9661.2017/8.9).

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, N.K., Biryukov, A.A., Sevast’yanov, E.Y. et al. Structure and Properties of Hydrogen Sulfide Sensors Based on Thin Tin Dioxide Films. Russ J Appl Chem 93, 427–436 (2020). https://doi.org/10.1134/S1070427220030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220030155

Keywords:

Navigation