Skip to main content
Log in

Thermal Decomposition of Enegy Composite Material with an Inert Binder

  • High Energy Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Results are presented of a study into the kinetics of thermal decomposition of a vulcanized mixed energy formulation K-2, the main components of which are ammonium perchlorate, octogene, aluminum, and inert binder, macromolecular cis-polybutadiene plasticized with transformer oil. In experiments with open crucibles, evaporation of the plasticizer, thermal decomposition of octogene and ammonium perchlorate successively occur in the samples. The dependence of the activation energy E on the conversion α is complicated: its minimum value (65 kJ mol−1) corresponds to the evaporation of the plasticizer, and the maximum value (192 kJ mol−1 at α ≈ 0.27), to the decomposition of octogene. At any hindrance to the free egress of decomposition products (packing of samples in an aluminum foil or the hermetical sealing), reactions occur in a “self-generated” atmosphere, and the type of K-2 decomposition changes. For samples in the foil, the exothermic peak of octogene is shifted to higher temperatures, the maximum of the activation energy (182 kJ mol−1) corresponds to α ≈ 0.45, and the loss of mass by K-2 samples is complete at lower temperatures. Reasons for this transformation of the K-2 decomposition pattern are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, A., Sharma, T.C., Kumar, M., and Narang, J.K., Def Technol., 2017, vol. 13, no. 1, pp. 22–32. https://doi.org/10.1016/j.dt.2016.11.005

    Article  Google Scholar 

  2. Glascoe, E.A., Hsu, P.C., Springer, H.K., De Haven, M.R., Tan, N., and Turner, H.C., Thermochim. Acta, 2011, vol. 515, pp. 58–66. https://doi.org/10.1016/j.tca.2010.12.021

    Article  CAS  Google Scholar 

  3. Abd-Elghany, M., Klapotke, T.M., Elbeih, A., Hassanein, S., and Elshenawy, T., Chin. J. Explos. Propellants, 2017, vol. 40, no. 2, pp. 24–32. https://doi.org/10.14077/jissn.1007-7812.2017.02.004

    Google Scholar 

  4. Abd-Elghany, M., Elbeih, A., and Hassanein, S., Cent. Eur. J. Energ. Mater., 2016, vol. 13, no. 3, pp. 714–735. https://doi.org/10.22211/cejem/64954

    Article  CAS  Google Scholar 

  5. Waesche, R.H.W. and Wenograd, J., Combust., Explos. Shock Waves, 2000, vol. 36, no. 1, pp. 125–134. https://doi.org/10.1007/BF02701521].

    Article  Google Scholar 

  6. Chaves, F.R. and Góis, J.C., J. Aerospace Technol. Manag., 2017, vol. 9, no. 2, pp. 225–230. https://doi.org/10.5028/jatm.v9i2.729

    Article  CAS  Google Scholar 

  7. Fathollahi, M., Pourmortazavi, S.M., and Hosseini, S.G., J. Energ. Mater., 2008, vol. 26, pp. 52–69. https://doi.org/10.1080/07370650701719295

    Article  CAS  Google Scholar 

  8. Ling-ke Zhang and Xiang-yang Zheng, Def. Technol., 2018, vol. 14, no. 5, pp. 422–425. https://doi.org/10.1016/j.dt.2018.04.007

    Article  Google Scholar 

  9. Gonçalves, R.F.B., Rocco, J.A.F.F., and Iha, K., Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2008, part 14, pp. 325–342. https://doi.org/10.5772/52109

    Google Scholar 

  10. Zaheer-ud-din Babar and Abdul Qadeer Malik, NUST J. Eng. Sci., 2014, vol. 7, no. 1, pp. 5–14.

    Google Scholar 

  11. Jangid, S.K., Singh, M.K., Solanski, V.J., Sinha, R.K., and Murthy, K.P.S., Def. Sci. J., 2017, vol. 67, no. 6, pp. 617–622. https://doi.org/10.14429/dsj.67.10533

    Article  CAS  Google Scholar 

  12. Yu-bin Li, Li-ping Pan, Zhi-jian Yang, Fei-van Gong, Xue Zheng, and Guan-song, Def. Technol., 2017, vol. 13, no. 6, pp. 422–427. https://doi.org/10.1016/j.dt.2017.05.022

    Article  Google Scholar 

  13. Sell, T., Vyazovkin, S., and Wight, C.A., Combust. Flame, 1999, vol. 119, pp. 174–181.

    Article  CAS  Google Scholar 

  14. Jinn-Shing Lee and Chung-King Hsu, Thermochim. Acta, 2002, vol. 392–393, pp. 153–156. https://doi.org/10.1016/S0040-6031(02)00095-3

    Article  Google Scholar 

  15. Sun, Y., Ren, H., and Jiao, Q., J. Therm. Anal. Calorim., 2018, vol. 131, no. 1, pp. 101–111. https://doi.org/10.1007/s10973-017-6525-8

    Article  CAS  Google Scholar 

  16. Vyazovkin, S. and Wight, C.A., Chem. Mater., 1999, vol. 11, pp. 3386–3393.

    Article  CAS  Google Scholar 

  17. Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuolli, N., and Suñol, J., Thermochim. Acta, 2014, vol. 590, pp. 1–23. https://doi.org/10.1016/j.tca.2014.05.036

    Article  CAS  Google Scholar 

  18. Koptelov, A.A., Milekhin, Yu.M., Sadovnichii, D.N., and Shishov, N.I., High Temp., 2008, vol. 46, no. 2, pp. 261–274. https://doi.org/10.1134/s10740-008-2016-8

    Article  CAS  Google Scholar 

  19. Milekhin, Yu.M., Koptelov, A.A., Shishov, N.I., Koptelov, I.A., and Rogozina, A.A., Russ. J. Appl. Chem., 2018, vol. 91, no. 5, pp. 802–812. https://doi.org/10.1134/S1070427218050117

    Article  CAS  Google Scholar 

  20. Koptelov, A.A., Milekhin, Yu.M., Baranets, Yu.N., and Rogozina, A.A., Abstracts of Papers, XV Minsk Mezhdunar. Forum po Teplo- i Massoobmenu (15th Minsk Int. Forum on Heat and Mass Exchange), vol. 2, Minsk, May 23–26, 2016, pp. 94–97.

  21. Fengjuan Xiao, Xiaoai Sun, Xiangfeng Wu, Junchai Zhao, and Yunjun Luo, J. Organometal. Chem., 2012, vol. 713, pp. 96–103. https://doi.org/10.1016/j.jorganchem.2012.04.025

    Article  CAS  Google Scholar 

  22. Chunyan Wang, Jizhen Li, Xuezhong Fan, Fengqi Zhao, Weiqiang Zhang, Guofang Zhang, and Ziwei Gao, Eur. J. Inorg. Chem., 2015, vol. 2015, no. 6, pp. 1012–1021. https://doi.org/10.1002/ejic.201402894

    Article  CAS  Google Scholar 

  23. Lin-lin Liu, Guo-qiand He, Ying-hong Wang, and Peijin Liu, J. Therm. Anal. Calorim., 2014, vol. 117, no. 2, pp. 621–628. https://doi.org/10.1007/s10973-014-3792-5

    Article  CAS  Google Scholar 

  24. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta, 2011, vol. 520, pp. 1–19. https://doi.org/10.1016./j.tca.2011.03.034

    Article  CAS  Google Scholar 

  25. Svetlov, B.S. and Koroban, V.A., Combust., Explos. Shock Waves, 1970, vol. 6, no. 1, pp. 9–14.

    Article  Google Scholar 

  26. Lesnikovich, A.I. and Levchik, S.V, J. Therm. Anal., 1983, vol. 27, pp. 89–93. https://doi.org/10.1007/BF01907324

    Article  CAS  Google Scholar 

  27. Brill, T.B., Gongwer, P.E., and Williams, G.K., J. Phys. Chem., 1994, vol. 98, pp. 12242–12247.

    Article  CAS  Google Scholar 

  28. Arnold, M., Veress, G.E., Paulik, J., and Paulik, F., Analyt. Chim. Acta, 1981, vol. 124, pp. 341–350.

    Article  CAS  Google Scholar 

  29. Koptelov, A.A., Milekhin, Yu.M., Matveev, A.A., Koptelov, I.A., and Rogozina, A.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 8, pp. 1265–1272. https://doi.org/10.1134/S1070427217080122

    Article  CAS  Google Scholar 

  30. Chen-Chia Huang and Tzueng-Shien Wu, Thermochim. Acta, 1994, vol. 239, pp. 105–114.

    Article  CAS  Google Scholar 

  31. Victor, A.C., Propellants, Explos., Pyrotech., 1997, vol. 22, pp. 59–64.

    Article  CAS  Google Scholar 

  32. Popok, V.N. and Il’inykh, K.F., Butlerov Soobshch., 2013, vol. 33, no.3, pp. 42–48.

    Google Scholar 

  33. Avdeev, V.Yu., Gidaspov, A.A., and Moshchenskii, Yu.V., Usp. Khim. Khim. Tekhnol., 2011, vol. XXV, no. 12 (128), pp. 7–11.

    Google Scholar 

  34. Wang, Q., Rogers, W.J., and Mannan, M.S., J. Therm. Anal. Calorim., 2009, vol. 98, pp. 225–233. https://doi.org/10.1007/s10973-009-0135-z

    Article  CAS  Google Scholar 

  35. Koptelov, A.A., Milekhin, Yu.M., Rogozina, A.A., Koptelov, I.A., and Shishov, N.I., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 1890–1894. https://doi.org/10.1134/S1070427218110216

    Article  CAS  Google Scholar 

  36. Sinditskii, V.P., Egorshev, V.Y., Serushkin, V.V., and Filatov, S.A., Combust., Explos., and Shock Waves, 2012, vol. 48, no. 1, pp. 81–99. https://doi.org/10.1134/S001050821201011X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Ethics declarations

The authors state that they have no conflict of interest to be disclosed in the present communication.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 12, pp. 1567–1577.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milekhin, Y.M., Koptelov, A.A., Rogozina, A.A. et al. Thermal Decomposition of Enegy Composite Material with an Inert Binder. Russ J Appl Chem 92, 1680–1689 (2019). https://doi.org/10.1134/S1070427219120085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219120085

Keywords

Navigation