Skip to main content
Log in

Thermal risk assessment and rankings for reaction hazards in process safety

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Reaction hazards remain the most serious concern in the chemical industry in spite of continual research and attention devoted to them. Many commercial calorimeters, such as the Differential Scanning Calorimetry (DSC), are useful screening tools for thermal risk assessment of reaction hazards. Some important thermodynamic and kinetic parameters, including onset temperature, adiabatic time to maximum rate, and maximum adiabatic temperature, were analyzed in this paper. A kinetic-based model under adiabatic conditions was developed, and the adiabatic time to maximum rate was estimated. Correlations between onset temperature (T o) and activation energy (E a), and between onset temperature (T o) and adiabatic time to maximum rate (TMR ad) were found, and were illustrated by some examples from the previous literature. Based on the heat of reaction and the adiabatic time to maximum rate, a thermal risk index (TRI) was defined to represent the thermal risk of a specific reaction hazard relative to di-tert-butyl peroxide (DTBP), and the results of this index were consistent with those of the reaction hazard index (RHI). The correlations and the thermal risk index method could be used as a preliminary thermal risk assessment for reaction hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A 0 :

Pre-exponential factor

BDE:

Bond dissociation energy

C A :

Concentration (mol/m3)

C p :

Specific heat capacity (J/kg∙K)

C pc :

Specific heat capacity of container (J/kg∙K)

Cp :

Specific heat capacity (J/mol∙K)

DSC:

Differential Scanning Calorimetry

DTBP:

Di-tert-butyl peroxide

E a :

Activation energy (kJ/mol or kcal/mol)

h :

Planck’s constant (J∙s)

−ΔH r :

Heat of reaction (kJ/mol or cal/g)

k :

Rate constant (1/s)

k B :

Boltzmann’s constant (J/K)

m :

Mass of chemical sample (kg)

m c :

Mass of container (kg)

\( \dot{q} \) :

Heat release rate at any temperature (W/kg)

\( \dot{q}_{\text{o}} \) :

Heat release rate at T o (W/kg)

R :

Gas constant (J/mol∙K)

r A :

Reaction rate (mol/m3·s)

RHI:

Reaction hazard index

t :

Time (s or min)

T :

Absolute temperature (K)

TBPA:

t-Butyl peroxy acetate

T m :

Maximum adiabatic decomposition temperature (K)

TMR ad :

Time to maximum rate at adiabatic conditions (s or min)

T o :

Onset temperature where the heat release rate is 0.1 °C/min (K)

TRI:

Thermal risk index

V :

Reaction volume (m3)

β :

Ratio of consequence

γ p :

Transfer coefficient

\( \varepsilon \) :

Ratio of probability

Φ :

Thermal inertia coefficient

References

  1. Iwata Y, Momota M, Koseki H. Thermal risk evaluation of organic peroxide by automatic pressure tracking adiabatic calorimeter. J Therm Anal Calorim. 2006;85:617–22.

    Article  CAS  Google Scholar 

  2. Wei C, Rogers WJ, Mannan MS. Layer of protection analysis for reactive chemical risk assessment. J Hazard Mater. 2008;159:19–24

    Article  CAS  Google Scholar 

  3. Ding SD, Bai CY, Liu ZP, Wang YZ. Enhanced thermal stability of poly(p-dioxanone) in melt by adding an end-capping reagent. J Therm Anal Calorim. 2008;94:89–95.

    Article  CAS  Google Scholar 

  4. Chiang CL, Chang RC, Chiu YC. Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim Acta. 2007;453:97–104.

    Article  CAS  Google Scholar 

  5. Ando T, Fujimoto Y, Morisaki S. Analysis of differential scanning calorimetric data for reactive chemical. J Hazard Mater. 1991;28:251–80.

    Article  CAS  Google Scholar 

  6. Stoessel F. What is your thermal risk. Chem Eng Prog. 1993;89:68–75.

    CAS  Google Scholar 

  7. Grewer T. Thermal hazards of chemical reactions. Amsterdam: Elsevier Science; 1994.

    Google Scholar 

  8. Keller A, Stark D, Fierz H, Heinzle E, Hungerbuhler K. Estimation of the time to maximum rate using dynamic DSC experiments. J Loss Prev Process Ind. 1997;10:31–41.

    Article  Google Scholar 

  9. Petkova V, Pelovski Y. Comparative DSC study on thermal decomposition of iron sulphates. J Therm Anal Calorim. 2008;93:847–52.

    Article  CAS  Google Scholar 

  10. Cheng SY, Tseng JM, Lin SY, Gupta JP, Shu CM. Runaway reaction on tert-butyl peroxybenzoate by DSC tests. J Therm Anal Calorim. 2008;93:121–6.

    Article  CAS  Google Scholar 

  11. National Institute of Standards and Technology (NIST): Chemistry Web Book, 2009. http://webbook.nist.gov.

  12. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc. 1985;107:3902–9.

    Article  CAS  Google Scholar 

  13. Fogler HS. Elements of chemical reaction engineering, 2nd ed. Upper Saddle River, New Jersey: Prentice-Hall Inc; 1992.

    Google Scholar 

  14. Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.

    Article  CAS  Google Scholar 

  15. Frank-Kamenetzkii DA. Diffusion and heat transfer in chemical kinetics, 2nd ed. New York: Plenum Press; 1969.

    Google Scholar 

  16. Asatryan R, Bozzelli JW, Simmie JM. Thermochemistry of methyl and ethyl nitro, RNO2, and nitrite, RONO, organic compounds. J Phys Chem A. 2008;112:3172–85.

    Article  CAS  Google Scholar 

  17. Badgujar DM, Talawar MB, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  Google Scholar 

  18. Uchida T, Wakakura M, Miyake A, Ogawa T. Thermal decomposition of organic peroxide with metals using calorimeters. J Therm Anal Calorim. 2008;93:47–52.

    Article  CAS  Google Scholar 

  19. Duh YS, Wu XH, Kao CS. Hazard ratings for organic peroxides. Process Saf Prog. 2008;27:89–99.

    Article  CAS  Google Scholar 

  20. Saraf SR, Rogers WJ, Mannan MS. Application of transition state theory for thermal stability prediction. Ind Eng Chem Res. 2003;42:1341–6.

    Article  CAS  Google Scholar 

  21. Marco E, Cuartielles S, PenaJA, Santamaria J. Simulation of the decomposition of di-cumyl peroxide in an ARSST unit. Thermochim Acta. 2000;362:49–58.

    Article  CAS  Google Scholar 

  22. Wei C, Saraf SR, Rogers WJ, Mannan MS. Thermal runaway reaction hazards and mechanisms of hydroxylamine with acid/base contaminants. Thermochim Acta. 2004;421:1–9.

    Article  CAS  Google Scholar 

  23. Li XR, Koseki H. Thermal decomposition kinetic of liquid organic peroxides. J Loss Prev Process Ind. 2005;18:460–4.

    Article  Google Scholar 

  24. Lee RP, Hou HY, Tseng JM, Chang MK, Shu CM. Reactive incompatibility of DTBP mixed with two acid solutions. J Therm Anal Calorim. 2008;93:269–74.

    Article  CAS  Google Scholar 

  25. Raley JH, Rust FF, Vaughan WE Decompositions of di-t-alkyl peroxides. III. Kinetics in liquid phase. J Am Chem Soc. 1948;70:1336–8.

    Article  CAS  Google Scholar 

  26. Cuny X, Lejeune M. Statistical modeling and risk assessment. Saf Sci. 2003;41:29–51.

    Article  Google Scholar 

  27. Stull DR. Safety in the chemical industry, vol. 3. In: Steere NV; 1974, p. 106–10.

Download references

Acknowledgements

This research was supported by the Mary Kay O’Connor Process Safety Center (MKOPSC) and Artie McFerrin Department of Chemical Engineering at Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sam Mannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Rogers, W.J. & Mannan, M.S. Thermal risk assessment and rankings for reaction hazards in process safety. J Therm Anal Calorim 98, 225–233 (2009). https://doi.org/10.1007/s10973-009-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0135-z

Keywords

Navigation