Skip to main content
Log in

Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Possibility of creating superacid catalysts on the basis of sulfated hydrosilicate nanoscrolls with halloysite structure and catalytic activity of the resulting materials in the model reaction of hexene-1 oligomerization were studied. The sulfation was performed with sulfuric acid solutions at concentrations of 0.25–1 M. The number of acid centers on the surface of the scrolls decreases with increase of the scid concentration, most probably due to the selective dissolution of the aluminum oxide sheet. In this case, the composition of the reaction products also changes, with the content of hexene-1 isomers increasing as compared with the oligomers. It was possible to obtain, at the lower boundary of the concentration range, an increased content of heavy fractions in the oligomerization products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khadiev, A. and Khalitov, Z., Acta Crys tallogr., Sect. A: Found. Adv., 2018, vol. 74, no. 3, pp. 233–244.

    Article  CAS  Google Scholar 

  2. Khalitov, Z., Khadiev, A., Valeeva, D., and Pashin, D., Acta Crystallogr., Sect. A: Found. Adv., 2016, vol. 72, no. 6, pp. 684–695.

    Article  CAS  Google Scholar 

  3. Krasilin, A.A., Khrapova, E.K., Nominé, A., Ghanbaja, J., Belmonte, T., and Gusarov, V.V., ChemPhysChem., 2019, vol. 20, no. 5, pp. 719–726.

    Article  CAS  PubMed  Google Scholar 

  4. Stolovas, D., Serra, M., Popovitz-Biro, R., Pinkas, I., Houben, L., Calvino, J.J., Joselevich, E., Tenne, R., Arenal, R., and Lajaunie, L., Chem. Mater., 2018, vol. 30, no. 24, pp. 8829–8842.

    Article  CAS  Google Scholar 

  5. Višić, B., Panchakarla, L.S., and Tenne, R., J. Am. Chem. Soc., 2017, vol. 139, no. 7, p. 12865.

    Article  CAS  PubMed  Google Scholar 

  6. Rao, C.N.R. and Govindaraj, A., Adv. Mater., 2009, vol. 21, no. 42, pp. 4208–4233.

    Article  CAS  Google Scholar 

  7. Mutilin, S.V., Soots, R.A., Vorob’ev, A.B., Ikusov, D.G., Mikhailov, N.N., and Prinz, V.Ya., J. Phys. D: Appl. Phys., 2014, vol. 47, no. 29, p. 295301.

    Article  CAS  Google Scholar 

  8. Gulina, L.B., Tolstoy, V.P., Petrov, Yu.V., and Danilov, D.V., Inorg. Chem., 2018, vol. 57, no. 16, pp. 9779–9781.

    Article  CAS  PubMed  Google Scholar 

  9. Islam, A.E., Rogers, J.A., and Alam, M.A., Adv. Mater., 2015, vol. 27, no. 48, pp. 7908–7937.

    Article  CAS  PubMed  Google Scholar 

  10. Ksenevich, V.K., Gorbachuk, N.I., Viet Ho, Shuba, M.V., Kuzhir, P.P., Maksimenko, S.A., Paddubskaya, A.G., Valusis, G., Wieck, A.D., Zak, A., and Tenne, R., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 1, pp. 37–43.

    CAS  Google Scholar 

  11. Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai Bo, and Wang, X., Nano Res., 2011, vol. 4, no. 9, pp. 882–890.

    Article  CAS  Google Scholar 

  12. Pierini, F., Lanzi, M., Lesci, I.G., and Roveri, N., Fibers Polym., 2015, vol. 16, no. 2, pp. 426–433.

    Article  CAS  Google Scholar 

  13. Siewiorek, A., Malczyk, P., Sobczak, N., Sobczak, J.J., Czulak, A., Kozera, R., Gude, M., Boczkowska, A., and Homa, M., J. Mater. Eng. Perform., 2016, vol. 25, no. 8, pp. 3194–3203.

    Article  CAS  Google Scholar 

  14. Naumenko, E.A., Guryanov, I.D., Yendluri, R., Lvov, Yu.M., and Fakhrullin, R.F., Nanoscale, 2016, vol. 8, no. 13, pp. 7257–7271.

    Article  CAS  PubMed  Google Scholar 

  15. Lecouvet, B., Horion, J., D’Haese, C., Bailly, C., and Nys - ten, B., Nanotechnology, 2013, vol. 24, no. 10, pp. 105704.

    Google Scholar 

  16. Yudin, V.E., Otaigbe, J.U., Nazarenko, S.I., Kim, W.D., and Korytkova, E.N., Mech. Compos. Mater., 2011, vol. 47, no. 3, pp. 335–342.

    Article  CAS  Google Scholar 

  17. Shu, Z., Chen, Y., Zhou, J., Li, T., Yu, D., and Wang, Y., Appl. Clay Sci., 2015, vol. 112–113, pp. 17–24.

    Article  CAS  Google Scholar 

  18. Yuan, P., Tan, D., and Annabi-Bergaya, F., Appl. Clay Sci., 2015, vols. 112–113, pp. 75–93.

    Article  CAS  Google Scholar 

  19. Parlayici, S., Eskizeybek, V., Avci, A., and Pehlivan, E., J. Nanostruct. Chem., 2015, vol. 5, no. 3, pp. 255–263.

    Article  CAS  Google Scholar 

  20. Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F., Zhou, J., Chen, F., and Liu, Z., Appl. Clay Sci., 2017, vol. 143, pp. 184–191.

    Article  CAS  Google Scholar 

  21. Krasilin, A.A., Bodalyov, I.S., Malkov, A.A., Khrapova, E.K., Maslennikova, T.P., and Malygin, A.A., Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 3, pp. 410–416.

    CAS  Google Scholar 

  22. Bian, Z., Li, Z., Ashok, J., and Kawi, S., Chem. Commun., 2015, vol. 51, no. 91, pp. 16324–16326.

    Article  CAS  Google Scholar 

  23. Li, B., Lin, X., Luo, Y., Yuan, X., and Wang, X., Fuel Process. Tech nol., 2018, vol. 176,, pp. 153–166.

    Article  CAS  Google Scholar 

  24. Yao, Y., Chen, H., Lian, C., Wei, F., Zhang, D., Wu, G., Chen, B., and Wang, S., J. Hazard. Mater., 2016, vol. 314, no. 193, pp. 129–139.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X., Wang, P., Wu, X., Lv, S., and Dai, J., Catal. Commun., 2016, vol. 83, pp. 18–21.

    Article  CAS  Google Scholar 

  26. Lvov, Yu., Wang, W., Zhang, L., and Fakhrullin, R., Adv. Mater., 2016, vol. 28, no. 6, pp. 1227–1250.

    Article  CAS  PubMed  Google Scholar 

  27. Maslennikova, T.P. and Korytkova, E.N., Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 418–425.

    Article  CAS  Google Scholar 

  28. Zahidah, K.A., Kakooei, S., Ismail, M.C., and Bothi Raja, P., Prog. Org. Coatings, 2017, vol. 111, pp. 175–185.

    Article  CAS  Google Scholar 

  29. Krasilin, A.A., Danilovich, D.P., Yudina, E.B., Bruyere, S., Ghanbaja, J., and Ivanov, V.K., Appl. Clay Sci., 2019, vol. 173. DOI: 10.1016j.clay.2019.03.007

  30. Krasilin, A.A. and Gusarov, V.V., Tech. Phys. Lett., 2016, vol. 42, no. 1, pp. 55–58.

    Article  CAS  Google Scholar 

  31. Singh, B., Clays Clay Miner., 1996, vol. 44, no. 2, pp. 191–196.

    Article  CAS  Google Scholar 

  32. Prishchenko, D.A., Zenkov, E.V., Mazurenko, V.V., Fakhrullin, R.F., Lvov, Yu.M., and Mazurenko, V.G., Phys. Chem. Chem. Phys., 2018, vol. 20, no. 8, pp. 5841–5849.

    Article  CAS  PubMed  Google Scholar 

  33. Guimarães, L., Enyashin, A.N., Seifert, G., and Duarte, H.A., J. Phys. Chem. C, 2010, vol. 114, no. 26, pp. 11358–11363.

    Article  CAS  Google Scholar 

  34. Momma, K. and Izumi, F., J. Appl. Crystallogr., 2011, vol. 44, no. 6, pp. 1272–1276.

    Article  CAS  Google Scholar 

  35. Zhang, H.L., Lei, X.R., Yan, C.J., Wang, H.Q., Xiao, G.Q., Hao, J.R., Wang, D., and Qiu, X.M., Adv. Mater. Res., 2011, vols. 415–417, pp. 2206–2214.

    Article  CAS  Google Scholar 

  36. Jin, T., Yamaguchi, T., and Tanabe, K., J. Phys. Chem., 1986, vol. 90, no. 20, pp. 4794–4796.

    Article  CAS  Google Scholar 

  37. Hino, M. and Arata, K., J. Chem. Soc., Chem. Commun., 1980, no. 18, pp. 851–852.

    Google Scholar 

  38. Mansir, N., Taufiq-Yap, Y.H., Rashid, U., and Lokman, I.M., Energy Convers. Manag., 2017, vol. 141, pp. 171–182.

    Article  CAS  Google Scholar 

  39. Alaba, P.A., Sani, Y.M., and Ashri Wan Daud, W.M., RSC Adv., 2016, vol. 6, no. 82, pp. 78351–78368.

    Article  CAS  Google Scholar 

  40. Mardhiah, H.H., Ong, H.C., Masjuki, H.H., Lim, S., and Lee, H.V., Renew. Sustain. Energy Rev., 2017, vol. 67, pp. 1225–1236.

    Article  CAS  Google Scholar 

  41. Hossain, M.N., Bhuyan Md, S.U.S., Alam, A.H., Md, A., and Seo, Y.C., Energies, 2018, vol. 11, no. 2, p. 299.

    Article  CAS  Google Scholar 

  42. Hanif, M.A., Nisar, S., and Rashid, U., Catal. Rev., 2017, vol. 59, no. 2, pp. 165–188.

    Article  CAS  Google Scholar 

  43. Sohn, J.R. and Park, E.H., J. Ind. Eng. Chem., 2000, vol. 6, no. 5, pp. 312–317.

    CAS  Google Scholar 

  44. Guo, J.-J., Jin, T.-S., Zhang, S.-L., and Li, T.-S., Green Chem., 2001, vol. 3, no. 4, pp. 193–195.

    Article  CAS  Google Scholar 

  45. Peratello, S., Molinari, M., Bellussi, G., and Perego, C., Catal. Today., 1999, vol. 52, nos. 2–3, pp. 271–277.

    Article  CAS  Google Scholar 

  46. Muraza, O., Ind. Eng. Chem. Res., 2015, vol. 54, no. 3, pp. 781–789.

    Article  CAS  Google Scholar 

  47. Popov, A.G., Pavlov, V.S., and Ivanova, I.I., J. Catal., 2016, vol. 335, pp. 155–164.

    Article  CAS  Google Scholar 

  48. Nicholas, C.P., Appl. Catal., A, 2017, vol. 543, pp. 82–97.

    Article  CAS  Google Scholar 

  49. Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Batonneau-Gener, I., Comparot, J.-D., and Khelifa, A., Colloids Surf., A, 2013, vol. 421, pp. 26–33.

    Article  CAS  Google Scholar 

  50. Sohn, J.R., J. Ind. Eng. Chem., 2004, vol. 10, no. 1, pp. 1–15.

    CAS  Google Scholar 

  51. Bernholc, J., Horsley, J. A., Murrell, L.L., Sher man, L.G., and Soled, S., J. Phys. Chem., 1987, vol. 91, no. 6, pp. 1526–1530.

    Article  CAS  Google Scholar 

  52. Marczewski, M., Jakubiak, A., Marczewska, H., Frydrych, A., Gontarz, M., and Sniegula, A., Phys. Chem. Chem. Phys., 2004, vol. 6, no. 9, pp. 2513–2522.

    Article  CAS  Google Scholar 

  53. Lermontov, S.A., Malkova, A.N., Yurkova, L.L., Kazachenko, V.P., Ivanov, V.K., Baranchikov, A.E., and Tret’yakov, Yu.D., Nanosist.: Fiz., Khim., Mat., 2013, vol. 4, no. 1, pp. 113–119.

    CAS  Google Scholar 

  54. Lermontov, S.A., Yurkova, L.L., Straumal, E.A., Baranchikov, A.E., Ivanov, V.K., and Shunina, I.G., Russ. J. Inorg. Chem., 2016, vol. 61, no. 1, pp. 7–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The X-ray diffraction analysis was made on the equipment of the Engineering center of St. Petersburg State Technological Institute (Technical University). The electron microscopy was performed on the equipment of of the JRC PMR IGIC RAS. The liquid chromatography was performed on the equipment of the Center of for Collective Use “New Petrochemical Processes, Polymere Composites and Adhesives,” no. 77601.

Funding

The study was supported by the Russian Science Foundation (grant no. 17-73-10426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Krasilin.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in this communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 9, pp. 1170–1178.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasilin, A.A., Straumal, E.A., Yurkova, L.L. et al. Sulfated Halloysite Nanoscrolls as Superacid Catalysts for Oligomerization of Hexene-1. Russ J Appl Chem 92, 1251–1257 (2019). https://doi.org/10.1134/S1070427219090106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219090106

Keywords

Navigation