Skip to main content
Log in

Evaporation of Plasticizer from NEPE Type Propellant

  • High-Energy Compounds
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Using the method of dynamic thermogravimetry and differential scanning calorimetry in the heating rate range 0.46–10.0 deg–1 min–1, evaporation of the plasticizer from propellant samples of the NEPE type was investigated. The experiments were carried out in an open system in a flow of pure argon at atmospheric pressure. Nitroglycerin is the main mass fraction of the plasticizer. The activation energy E of the gross evaporation–diffusion process is determined by various methods. Heat of evaporation of the plasticizer ΔHv is estimated. It is shown that in the early stage of evaporation the values of E and ΔHv practically coincide. At a temperature of 298.15 K ΔHv = 89 ± 4 kJ mol–1, which is in satisfactory agreement with the literature data for heat of evaporation of pure nitroglycerin. With any way of preventing free removal of the plasticizer from the surface of the samples on the DSC thermograms successive exothermic peaks of the thermal decomposition of the plasticizer and the octogen are observed, which are not realized in the open system for the indicated heating rates at T < 190°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flamengo Houra, I., Sućeska, M., and Matečić Mušanić, S., Central Eur. J. Energetic Mater., 2010, vol. 7, no. 1, pp. 3–19.

    Google Scholar 

  2. Matečić Mušanić, S., Flamengo Houra, I., and Sućeska, M., Central Eur. J. Energetic Mater., 2010, vol. 7, no. 3, pp. 233–251.

    Google Scholar 

  3. Sućeska, M., Matecic, Mušanic, S., and Flamengo Houra, I., Thermochim. Acta, 2010, vol. 510, nos. 1–2., pp. 9–19.

    Article  CAS  Google Scholar 

  4. Topma, A.S., J. Hazard. Mater., 1980, vol. 4, pp. 95–112.

    Article  Google Scholar 

  5. Sun, Y., Ren, H., Jiao, Q., J. Thermal Anal. Calorim., 2018, vol. 131, no. 1, pp. 101–111.

    Article  CAS  Google Scholar 

  6. Wu, W., Chen, C., Ding, C., and Wang, G., Propellants, Explosives, Pyrotecnics, 2017, vol. 42, pp. 1–7.

    Article  Google Scholar 

  7. Ding, L., Zhao, F.-Q., Pan, Q., and Xu, H.-X., J. Analyt. Appl. Pyrolysis, 2016, vol. 121, pp. 121–127.

    Article  CAS  Google Scholar 

  8. Pai Verneker, V.R., Kishore, K., and Subhas, C.B.V., J. Space-craft & Rockets, 1983, vol. 20, no. 2, pp. 141–143.

    Article  Google Scholar 

  9. Shamsa, F., Iran. J. Pharmac. Sci., 2005, vol. 1, no. 4., pp. 203–207.

    Google Scholar 

  10. Milekhin, Yu.M., Koptelov, A.A., Sadovnichii, D.N., et al., Combustion, Explosion, and Shock Waves, 2006, vol. 42, no. 2, pp. 242–246.

    Article  Google Scholar 

  11. Koptelov, A.A., Milekhin, Yu.M., Matveev, A.A., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 8, pp. 1265–1272.

    Article  CAS  Google Scholar 

  12. Koptelov, A.A., Koptelov, I.A., Rogozina, A.A., and Yushkov, E.S., Russ. J. Appl. Chem., 2016, vol. 89, no. 9, pp. 1454–1460.

    Article  CAS  Google Scholar 

  13. Vyazovkin, S., Burnham, A.K., Criado, J.M., et al., Thermochim. Acta, 2011, vol. 520, pp. 1–19.

    Article  CAS  Google Scholar 

  14. Surov, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 1, pp. 42–46.

    Article  CAS  Google Scholar 

  15. Koptelov, A.A., Milekhin, Yu.M., and Baranets, Yu.N., Combustion, Explosion, and Shock Waves, 2011, vol. 47, no. 3, pp. 302–313.

    Article  Google Scholar 

  16. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, McGraw-Hill, New York, 1977.

    Google Scholar 

  17. L’vov, B.V., Abstracts of Papers, Proc. Int. Conf. on Thermal Analysis and Calorimetry in Russia (RTAC-2016), September 16–23, 2016, St. Petersburg, Russia, vol. 1, pp. 32–36.

    Google Scholar 

  18. Koptelov, A.A. and Koptelov, I.A., Polym. Sci. Ser. B, 2009, vol. 51, nos. 7–8, pp. 313–319.

    Article  Google Scholar 

  19. Miroshnichenko, E.A., Korchatova, L.I., Shelaputina, V.P., et al., Bull. Acad. Sci. USSR. Division of Chemical Science, 1988, vol. 37, no. 9, pp. 1778–1781.

    Article  Google Scholar 

  20. Koptelov, A.A., Milekhin, Yu.M., Baranets, Yu.N., and Rogozina, A.A., Abstracts of Papers, Proc. XVth Minsk Int. Heat and Mass Transfer Forum, May 23–26, 2016, Minsk, Belarus, vol. 2, pp. 94–98.

    Google Scholar 

  21. Huang, Z.-P., Nie, H.-Y., Zhang, Y.-Y., et al., J. Hazard. Mater., 2012, vol. 229–230, pp. 251–257.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Additional information

Original Russian Text © Yu.M. Milekhin, A.A. Koptelov, N.I. Shishov, I.A. Koptelov, A.A. Rogozina, 2018, published in Zhurnal Prikladnoi Khimii, 2018, Vol. 91, No. 5, pp. 688−699.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milekhin, Y.M., Koptelov, A.A., Shishov, N.I. et al. Evaporation of Plasticizer from NEPE Type Propellant. Russ J Appl Chem 91, 802–812 (2018). https://doi.org/10.1134/S1070427218050117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427218050117

Navigation