Skip to main content
Log in

Kinetics of Thermal Decomposition of Solid Propellant Based on Aluminum and Ammonium Perchlorate

  • High Energy Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Kinetic regularities of the mass loss and heat and-gas release were studied in the thermal decomposition of a solid propellant composed of aluminum, ammonium perchlorate, and a polymer binder. It was shown that, under heating from 40 to 340°C under permanent vacuum conditions, propellant samples decompose without ignition, with the limiting mass loss in the decomposition being 48%. When experiments were performed in air, the propellant formulation decomposes with sharp ignition, with the inflammation temperature (270–287°C) and amount of volatiles released by this instant of time (10–16 wt %) dependent on the heating rate. The kinetic regularities of the mass loss in the decomposition of a solid propellant were described in terms of the polychromatic kinetics model that assumes that the reaction system has ensembles of particles differing in reactivity. The distribution functions of the mass fractions of the propellant by activation energies of decomposition were calculated. The heat release kinetics in the decomposition of a propellant formulation in the temperature range 153–270°C in a closed evacuated system is described by a sum of equations for two parallel reactions: 1st-order reaction with a heat effect Q1 = 200 ± 5 kJ kg–1 and 1st-order autocatalysis with heat effect Q2 = 1900 ± 50 kJ kg–1. The rate constants and the activation parameters of the process were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obnosov, B.V., Sorokin, V.A., Yanovskii, L.S., Yagodnikov, D.A., Frantskevich, V.P., Zhivotov, N.P., Surikov, E.V., Kobko, G.G., Tikhomirov, M.A., and Sharov, M.S., Konstruktsiya i proektirovanie kombinirovannykh raketnykh dvigatelei na tverdom toplive (Design of Combined Solid-Fuel Rocket Engines), Sorokin, V.A., Ed., Moscow: Mosk. Gos. Tekhn. Univ. im. N.E. Bau mana, 2014, p. 223.

  2. Hedman, T.D., Propulsion Power Res., 2016, vol. 5, no. 2, pp. 87–96. https://doi.org/10.1016/j.jppr.2016.04.002

    Article  Google Scholar 

  3. Cerri, S., Bohn, M.A., Menke, K., and Galfetti, L., Central Eur. J. Energetic Mater., 2009, vol. 6, no. 2, pp. 149–165.

    CAS  Google Scholar 

  4. Bihari, B.K., Rao, N.P., Gupta, M., and Murthy, K.P.S., Proc. 11th Int. High Energy Materials Conf. & Exhibits, HEMCE-2017, Pune, India, 23–25 November 2017, pp. 386–389.

    Google Scholar 

  5. Prasuła, P. and Czerwińska, M., Proc. 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, 18–20 April, 2017, pp. 916–926.

    Google Scholar 

  6. Musanic, S. and Suceska, M., Central Eur. J. Energetic Mater., 2013, vol. 10, no. 2, pp. 225–244.

    CAS  Google Scholar 

  7. Biggs, G.L., 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Denver, Colorado, 2–5 August 2009, pp. 2009–5423.

    Google Scholar 

  8. Goikhman, B.D. and Smekhunova, T.P., Russ. Chem. Rev. 1980, vol. 49, no. 8, pp. 748–758.

    Article  Google Scholar 

  9. Gonçalves, R.F.B., Silva, R.P., Rocco, J.A., and Iha, K., 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Hartford, CT, 21–23 July 2008, pp. 4959–4966.

    Google Scholar 

  10. Sell, T., Vyazovkin, S., and Wight, C.A., Combust. Flame, 1999, no. 119, pp. 174–181. https://doi.org/10.1016/S0010-2180(99)00036-X

    Google Scholar 

  11. Almeida, L.E.N., Martins, A.F., Gomes, S.R., and Cunha, F.A., 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., San Jose, CA, 14–17 July, 2013, pp. 4088–5006. https://doi.org/10.2514/6.2013-4088

    Google Scholar 

  12. Mezroua, A., Phd. Ecole Militaire Polytechnique, Algiers, Algeria, 2015.

    Google Scholar 

  13. Smirnov, L.P., Russ. Chem. Rev., 2004, vol. 73, no. 11, pp. 1121–1141.

    Article  CAS  Google Scholar 

  14. Sandakov, G.I., Smirnov, L.P., Sosikov, A.I., Summanen, K.T., and Volkova, N.N., J. Polym. Sci., Part B: Polym. Phys., 1994, vol. 32, pp. 1585–1592. https://doi.org/10.1002/polb.1994.090320901

    Article  CAS  Google Scholar 

  15. Volkova, N.N., Tarasov, V.P., and Erofeev, L.N., Polym. Sci., Ser. A, 2008, vol. 50, no. 6, pp. 698–703.

    Article  Google Scholar 

  16. Manelis, G.B., Nazin, G.M., Rubtsov, Yu.I., and Strunin, V.A., Thermal Decomposition and Combustion of Explosives and Propellants, London: Taylor & Francis Group, 2003.

    Google Scholar 

  17. Eslami, A., Hosseini, G., and Bazrgary, M., J. Thermal Anal. Calorim., 2013, vol. 113, pp. 721–730.

    Article  CAS  Google Scholar 

  18. Hori, K. and Iwama, A., Propellants, Explos., Pyrotech., 1990, vol. 15, pp. 99–102. https://doi.org/10.1002/prep.19900150307

    Article  CAS  Google Scholar 

  19. D’yakov, A.P., Nikolaeva, L.I., Strunin, V.A., and Manelis, G.B., Khim. Fiz., 2003, vol. 22, no. 5, pp. 70–73.

    Google Scholar 

  20. Koptelov, A.A. and Karyazov, S.V., Dokl. Phys. Chem., 2003, vol. 389, no. 46, pp. 101–105.

    Article  CAS  Google Scholar 

  21. Kim, E.S. and Yang, V., Combust. Flame, 2002, vol. 131, pp. 227–236. https://doi.org/10.1016/S0010-2180(02)00411-X

    Article  CAS  Google Scholar 

  22. Garland, N.L. and Nelson, H.H., Chem. Phys. Lett., 1992, vol. 191, nos. 3-4, pp. 269–272. https://doi.org/10.1016/0009-2614(92)85299-P

    Article  CAS  Google Scholar 

  23. Pivkina, A.N., Murav’yov, N.V., Monogarov, K.A., Meerov, D.B., Fomenkov, I.V., Skryleva, E.A., Presnyakov, M.Yu., Vasil’ev, A.L., Shishov, N.I., and Milyokhin, Yu.M., Combust., Explos. Shock Waves, 2018, vol. 54, no. 4, pp. 450–460. https://doi.org/10.15372/FGV20180409.

    Article  Google Scholar 

  24. Galyuk, O.S., Rubtsov, Yu.I., Malinovskaya, G.F., and Manelis, G.B., Zh. Fiz. Khim., 1965, vol. 39, pp. 2319–2322.

    CAS  Google Scholar 

  25. Mikhailov, A.I., Lebedev, Ya.S., and Buben, N.Ya., Kinet. Kataliz, 1964, vol. 5, no. 6, pp. 1020–1027.

    CAS  Google Scholar 

  26. Lebedev, Ya.S., Usp. Khim., 1968, vol. 37, pp. 934–946.

    Article  CAS  Google Scholar 

  27. Lebedev, Ya.S., Kinet. Kataliz, 1978, vol. 19, no. 6, pp. 1367–1377.

    CAS  Google Scholar 

  28. Emanuel, N.M. and Buchachenko, A.L., Chemical Physics of Polymer Degradation and Stabilization, Utrecht, The Netherlands: VNU Science Press, 1987.

    Google Scholar 

  29. Dubovitskii, V.A. and Irzhak, V.I., Polym. Sci., Ser. B, 2005, vol. 47, nos. p1-2, pp. 22–41.

    Google Scholar 

  30. Lawson, C.L. and Hanson, R.J., Solving Least Squares Problems, Revised republication, Phyladelphia: SIAM (Society for Industrial and Applied Mathematics), 1995.

    Book  Google Scholar 

  31. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Thermochim. Acta., 2011, vol. 520, pp. 1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  32. Manelis, G.B. and Rubtsov, Yu.I., Zh. Fiz. Khim., 1966, vol. 40, no. 4, pp. 770–774.

    CAS  Google Scholar 

Download references

Funding

The study was financed by the Institute of Problems of Chemical Physics, Russian Academy of Sciences, topic “Development of high-energy materials and technologies for promising systems being developed,” State registration no. 008920140019 and financially supported by Program no. 56 of the Presidium of the Russian Academy of Sciences “Fundamentals of breakthrough technologies in the interests of national security.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Volkova.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 11, pp. 1463−1475.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, N.N., Dubovitskii, V.A., Zholudev, A.F. et al. Kinetics of Thermal Decomposition of Solid Propellant Based on Aluminum and Ammonium Perchlorate. Russ J Appl Chem 92, 1558–1569 (2019). https://doi.org/10.1134/S1070427219110132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219110132

Keywords

Navigation