Skip to main content
Log in

Chemical synthesis and granulometric composition of CaZr0.9Y0.1O3–δ powders

  • Processes Using Various Catalyst Systems
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

CaZr0.9Y0.1O3–δ powders were synthesized by chemical solution methods: modified Pechini method and from solutions of inorganic salts in water and ethanol. The structure crystallizes into the orthorhombic type upon annealing at 1000°C for powders prepared by the Pechini method and from solution of salts in water. It was shown that CaZr0.9Y0.1O3–δ powders synthesized by various methods have different dispersities. The results obtained in a study of the granulometric composition by the sedimentation method and microscopic analysis enable fabrication of dense and mechanically strong electrolyte films and ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hills, M.P., Schwandt, C., and Kumar, R.V., J. Electrochem. Soc., 2006, vol. 153, no. 10, pp. H189–H194.

    Google Scholar 

  2. Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Inorg. Mater., 2014, vol. 50, no. 5, pp. 495–502.

    Article  CAS  Google Scholar 

  3. Bao, J., Ohno, H., Kurita, N., et al., Electrochim. Acta, 2011, vol. 56, pp. 1062–1068.

    Article  CAS  Google Scholar 

  4. Babilo, P., Uda, T., and Haile, S.M., J. Mater. Res., 2007, vol. 22, no. 5, pp. 1322–1330.

    Article  CAS  Google Scholar 

  5. Anan’ev, M.V., Bershitskaya, N.M., Plaksin, S.V., and Kurum chin, E.Kh., Russ. J. Electrochem., 2012, vol. 48, no. 9, pp. 879–886.

    Article  Google Scholar 

  6. Sniezek Edyta, Szczerba Jacek, Jastrzêbska Ilona, et al., Mater. Technol., 2015, vol. 49, no. 4, pp. 573–577.

    CAS  Google Scholar 

  7. Soon Cheol Hwang and Gyeong Man Choi, Solid State Ionics, 2008, vol. 179, pp. 1042–1045.

    Article  Google Scholar 

  8. Changzhen Wang, Xiuguang Xu, Hualong Yu, et al., Solid State Ionics, 1988, vols. 28–30, pp. 542–545.

    Google Scholar 

  9. Magdalena Dudek and Miroslaw M. Bucko, J. Solid State Electrochem., 2010, vol. 14, no. 4, pp. 565–570.

    Article  Google Scholar 

  10. Safronov, A.P., Kalinina, E.G., Kotov, Yu.A., et al., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, pp. 162–169.

    Google Scholar 

  11. Yuan Zou, Wei Zhou, Jaka Sunarso, et al., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 9195–9204.

    Article  CAS  Google Scholar 

  12. Courtin, E., Boy, P., Piquero, T., et al., J. Power Sources, 2012, vol. 206, pp. 77–83.

    Article  CAS  Google Scholar 

  13. Konakov, V.G., Golubev, S.N., Solov’eva, E.N., et al., Mater. Phys. Mechanics, 2011, vol. 11, pp. 68–75.

    CAS  Google Scholar 

  14. Benxue Liu, Xuejun Lin, Luyi Zhu, et al., Ceram. Int., 2014, vol. 40, pp. 12525–12531.

    Article  CAS  Google Scholar 

  15. Minghua Zhou and Aftab Ahmad, Sens. Actuators B, 2008, vol. 129, pp. 285–291.

    Article  CAS  Google Scholar 

  16. Huiyu Li and Xingmin Guo, Curr. Appl. Phys., 2013, vol. 13, pp. 500–504.

    Article  Google Scholar 

  17. Leen van Rij, Louis Winnubst, Le Jun, et al., J. Mater. Chem., 2000, vol. 10, pp. 2515–2521.

    Article  CAS  Google Scholar 

  18. Le, J., Van Rij, L.N., Van Landschoot, R.C., and Schoonman, J.J., Eur. Ceram. Soc., 1999, vol. 19, no. 15, pp. 2589–2591.

    Article  CAS  Google Scholar 

  19. Dudek, M., Rg, G., Bogursz, W., et al., Mater. Sci.-Poland, 2006, vol. 24, no. 1, pp. 253–260.

    CAS  Google Scholar 

  20. Dudek, M. and Rapacz-Kmita, A., Cent. Eur. J. Chem., 2013, vol. 11(12), pp. 2088–2097.

    CAS  Google Scholar 

  21. Dudek, M. and Dudek, P., Adv. Mater. Sci., 2011, vol. 11, no. 3 (29), pp. 5–12.

    Google Scholar 

  22. Prasanth, C.S., Kumar, H.P., Pazhani, R., et al., J. Alloys Compd., 2008, vol. 464, pp. 306–309.

    Article  CAS  Google Scholar 

  23. Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., et al. Dokl. Akad. Nauk, 2015, vol. 461, no. 4, pp. 418–420.

    Google Scholar 

  24. Khaliullin, Sh.M., Zhuravlev, V.D., Bamburov, V.G., et al., Yadern. Fiz. Inzhiniring, 2014, vol. 5, no. 4, pp. 346–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Khaliullina.

Additional information

Original Russian Text © A.Sh. Khaliullina, V.M. Kuimov, S.A. Belyakov, L.A. Dunyushkina, 2017, published in Zhurnal Prikladnoi Khimii, 2017, Vol. 90, No. 3, pp. 279−285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliullina, A.S., Kuimov, V.M., Belyakov, S.A. et al. Chemical synthesis and granulometric composition of CaZr0.9Y0.1O3–δ powders. Russ J Appl Chem 90, 342–348 (2017). https://doi.org/10.1134/S107042721703003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042721703003X

Navigation