Skip to main content
Log in

Ceramic electrolytes based on (Ba1 − x Ca x )(Zr0.9Y0.1)O3 solid solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The aim of this work was to study the electrical and electrochemical properties of the (Ba1 − x Ca x )(Zr0.9Y0.1)O3 solid solutions. The powders of different calcium content (x = 0, 0.05, 0.1, and 1) were prepared by a thermal decomposition of organo-metallic precursors containing ethylenediaminetetraacetate acid. X-ray diffraction analysis showed that a small substitution of calcium for barium caused formation of cubic solid solutions with the decreasing cell parameters. Electrical conductivity measurements were performed by the d.c. four-probe method in controlled gas atmospheres containing Ar, air, H2, and/or H2O at temperature from 300 to 800 °C. It was found that the conductivity depended on a chemical composition of the samples and the atmosphere. Overall, the electrical conductivity was higher in wet atmospheres that contained oxygen that was in accordance with the model of a proton transport in perovskite structure which assumed the presence of the oxygen vacancies. The solid solution containing 5 mol% of calcium showed the highest conductivity and the lowest activation energy of conductivity regardless of the atmospheres; this can be attributed to the local changes in the cubic perovskite structure. Test results for CaZr0.9Y0.1O3 used as an electrolyte in solid oxide galvanic cells involving CaCr2O4 as a reference electrode are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Solid State Ion 3–4:359 doi:10.1016/0167-2738(81)90113-2

    Article  Google Scholar 

  2. Davies RA, Islam MS, Chadwick AV, Rush GE (2000) Solid State Ion 130:115 doi:10.1016/S0167-2738(00)00573-7

    Article  CAS  Google Scholar 

  3. Iwahara H, Uchida H, Ono K, Ogaki K (1988) J Electrochem Soc 135:529 doi:10.1149/1.2095649

    Article  CAS  Google Scholar 

  4. Kokkofitis C, Ouzounidou M, Skodra A, Stoukides M (2008) Solid State Ion 178:475 doi:10.1016/j.ssi.2007.01.002

    Article  Google Scholar 

  5. Stuart P, Unno T, Kilner JA, Skinner SJ (2008) Solid State Ion 179:1120 doi:10.1016/j.ssi.2008.01.067

    Article  CAS  Google Scholar 

  6. Schober T (2003) Solid State Ion 162–163:277 doi:10.1016/S0167-2738(03)00241-8

    Article  Google Scholar 

  7. Shiumura T, Esaka K, Matsumoto H (2002) Solid State Ion 149:237 doi:10.1016/S0167-2738(02)00400-9

    Article  Google Scholar 

  8. Kurita N, Fukatsu N, Miyamoto S, Sato F, Nakai H, Ire K, Ohashi T (1996) Metall Mater Trans 27B:929

    CAS  Google Scholar 

  9. Yamija T, Kazeoka H, Yogo T, Iwahara H (1991) Solid State Ion 47:271 doi:10.1016/0167-2738(91)90249-B

    Article  Google Scholar 

  10. Janke D (1982) Metall Trans 13B:227

    CAS  Google Scholar 

  11. Dudek M, Bućko MM (2003) Solid State Ion 157:183 doi:10.1016/S0167-2738(02)00207-2

    Article  CAS  Google Scholar 

  12. Dudek M, Róg G, Bogusz W, Kozłowska-Róg A, Bućko MM, Zych Z (2006) Mater Sci Pol 24:253

    CAS  Google Scholar 

  13. Fergus J (2006) J Power Sources 162:30 doi:10.1016/j.jpowsour.2006.06.062

    Article  CAS  Google Scholar 

  14. Haile S (2003) Mater Today 3:24 doi:10.1016/S1369-7021(03)00331-6

    Article  Google Scholar 

  15. Katahira K, Kokchi Y, Shimura T, Iwahara H (2008) Solid State Ion 138:91 doi:10.1016/S0167-2738(00)00777-3

    Article  Google Scholar 

  16. Ryu K, Haile S (1999) Solid State Ion 125:355 doi:10.1016/S0167-2738(99)00196-4

    Article  CAS  Google Scholar 

  17. Bhide SV, Virkar AV (1999) J Electrochem Soc 146:2038 doi:10.1149/1.1391888

    Article  CAS  Google Scholar 

  18. Li J, Luo J, Chuang K, Sanger A (2008) Electrochim Acta 53:3701 doi:10.1016/j.electacta.2007.12.020

    Article  CAS  Google Scholar 

  19. Fang S, Bi L, Wu X, Gao H, Chen C (2008) J Power Sources 183:126 doi:10.1016/j.jpowsour.2008.05.015

    Article  CAS  Google Scholar 

  20. Fabbri E, Epifanio AD, Bartolomeo ED, Licoccia S, Traversa E (2008) Solid State Ion 179:558 doi:10.1016/j.ssi.2008.04.002

    Article  CAS  Google Scholar 

  21. Ding H, Lin B, Liu X, Meng G (2008) Electrochem Commun 10:1388 doi:10.1016/j.elecom.2008.07.016

    Article  CAS  Google Scholar 

  22. Norby T (1999) Solid State Ion 125:1 doi:10.1016/S0167-2738(99)00152-6

    Article  CAS  Google Scholar 

  23. Matsushita E, Sasaki T (1999) Solid State Ion 125:31 doi:10.1016/S0167-2738(99)00155-1

    Article  CAS  Google Scholar 

  24. Kreuer K (1999) Solid State Ion 125:285 doi:10.1016/S0167-2738(99)00188-5

    Article  CAS  Google Scholar 

  25. Kobayashi K, Yamaguchi S, Iguchi Y (1998) Solid State Ion 108:355 doi:10.1016/S0167-2738(98)00063-0

    Article  CAS  Google Scholar 

  26. Kiukola K, Wagner C (1957) J Electrochem Soc 104:379 doi:10.1149/1.2428586

    Article  Google Scholar 

  27. Weyl A, Wei S, Janke D (1994) Steel Res 65:167

    CAS  Google Scholar 

  28. Schober T, Bohn HG (2000) Solid State Ion 127:351 doi:10.1016/S0167-2738(99)00283-0

    Article  CAS  Google Scholar 

  29. Kurita N, Fukatsu N, Ito K, Ohashi T (1995) J Electrochem Soc 142:1553 doi:10.1149/1.2048611

    Article  Google Scholar 

  30. Patterson J, Bogern E, Rapp R (1967) J Electrochem Soc 114:752 doi:10.1149/1.2426723

    Article  CAS  Google Scholar 

  31. Nowick AS, Du Y, Liang K (1999) Solid State Ion 125:303 doi:10.1016/S0167-2738(99)00189-7

    Article  CAS  Google Scholar 

  32. Sata N, Yugami H, Akiyama Y, Sone H, Kitamura N, Hattori T, Ishigame M (1999) Solid State Ion 125:383 doi:10.1016/S0167-2738(99)00199-X

    Article  CAS  Google Scholar 

  33. Novick AS (1989) Superionic solids and solid electrolytes. Academic, New York

    Google Scholar 

  34. Janke D (1983) Arch Eissenhuttenwes 54:259

    CAS  Google Scholar 

  35. Jacob KT, Kale GM, Abraham KP (1992) J Electrochem Soc 139:517 doi:10.1149/1.2069248

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out under contract no. T08D 051 280 with the Polish Ministry of Science and High Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Dudek.

Additional information

Contribution to the Fifth Baltic Conference on Electrochemistry, 30 April - 3 May 2008, Tartu, Estonia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudek, M., Bućko, M.M. Ceramic electrolytes based on (Ba1 − x Ca x )(Zr0.9Y0.1)O3 solid solution. J Solid State Electrochem 14, 565–570 (2010). https://doi.org/10.1007/s10008-008-0706-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0706-0

Keywords

Navigation