Skip to main content
Log in

Study of competitive transport of some heavy metal cations across bulk liquid membranes containing phenylaza-15-crown-5 and cryptand 222 as carriers using flame atomic absorption spectrometry

  • Various Technologies
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, a competitive transport procedure was used for transport process of Cr(III), Cu(II), Co(II), Cd(II), Ag(I), Pb(II), and Zn(II) metal cations across bulk liquid membrane (BLM) using phenylaza- 15-crown-5 and cryptand 222 as carriers and dichloromethane (DCM), chloroform (CHCl3), nitrobenzene (NB), 1,2-dichloroethane (1,2-DCE) and CHCl3–NB, DCM–1,2-DCE binary solvent solutions as extracting solvents. Atomic absorption spectrometry was used for determination of the concentration of the studied metal cations in source and receiving phases. The experimental results show that maximum transport rate is for silver(I) cation in the presence of the other metal cations using phenylaza-15-crown-5 as carrier and no transport was observed for the seven metal cations by cryptand 222 in all membrane systems. The effect of various parameters on the transport process was investigated. The effect of solvent on the transport efficiency of silver(I) cation was found to be in the order: NB > DCM > 1,2- DCE > CHCl3. The results also showed that the transport process of silver(I) cation through CHCl3–NB and DCM–1,2-DCE bulk liquid membranes is sensitive to the solvent composition. A non-linear relationship was observed between the transport rate of silver(I) ion and the composition of these binary mixed solvents. The influence of some fatty acids as surfactant in the membrane phase on the transport of the metal cations was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, N.N., Separating hydrocarbons with liquid membranes, US Patent 3, 1968, vol. 410, p. 794.

    Google Scholar 

  2. Arslan, G., Tor, A., Cengeloglu, Y., and Ersoz, M., J. Hazard. Mater, 2009, vol. 165, p. 729.

    Article  CAS  Google Scholar 

  3. Shamsipur, M., Davarkhah, R., and Khanchi, A.R., Sep. Purif. Technol, 2010, vol. 71, p. 63.

    Article  CAS  Google Scholar 

  4. Alizadeh, T., and Memarbashi, N., Sep. Purif. Technol, 2012, vol. 90, p. 83.

    Article  CAS  Google Scholar 

  5. Alpoguz, H.K., Kaya, A., Memon, S., and Yilmaz, M., J. Macromol. Sci. A Pure Appl. Chem, 2007, vol. 44, p. 17.

    Article  CAS  Google Scholar 

  6. Noble, R.D., and Ster, S.A., Membrane Separations Technology: Principles and Applications, Amsterdam: Elsevier, 1995.

    Google Scholar 

  7. Sadeghi, S., Jahani, M., and Ghiamati, E., Sep. Sci. Technol. 2011, vol. 46, p. 215.

    Article  CAS  Google Scholar 

  8. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy.

  9. Directive 2006/11/EC of the European Parlament and of the Council of 15 February 2006 on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community.

  10. Kimbrough, D.E., Wong, P.W., and Biscoe, J.K., J. Solid Waste Technol. Manage, 1996, vol. 23, p. 197.

    CAS  Google Scholar 

  11. Rehman, S., Akhtar, G., Chaudry, M.A., and Ali, K., J. Membr. Sci, 2012, vol. 389, p. 287.

    Article  CAS  Google Scholar 

  12. Alpaydin, S., Saf, A., Bozkurt, S., and Sirit, A., Desalination, 2011, vol. 275, p. 166.

    Article  CAS  Google Scholar 

  13. Izatt, R.M., Dearden, D.V., Brown, P.R., Bradshaw, J.S., Lamb, J.D., and Christensen, J.J., J. Am. Chem. Soc., 1983, vol. 105, p. 1785.

    Article  CAS  Google Scholar 

  14. Izatt, R.M., Clark, G.A., Bradshaw, J.S., Lamb, J.D., and Christensen, J.J., Sep. Purif. Methods, 1986, vol. 15, p. 21.

    Article  CAS  Google Scholar 

  15. Walkowiak, W. and Kozlowski, C., Desalination, 2009, vol. 240, p. 186.

    Article  CAS  Google Scholar 

  16. Ersoz, M., Adv. Colloid Int. Sci., 2007, vols. 134, 135, p. 96.

    Article  Google Scholar 

  17. Dalali, N., Yavarizadeh, H., and Agrawal, Y.K., J. Ind. Eng. Chem., 2012, vol. 18, p. 1001.

    Article  CAS  Google Scholar 

  18. López-López, J.A., García-Vargas, M., and Moreno, C., Talanta, 2013, vol. 108, p. 7.

    Article  Google Scholar 

  19. Kazemi, S.Y., and Hamidi, A.S., J. Chem. Eng. Data, 2011, vol. 53, p. 222.

    Article  Google Scholar 

  20. Ulewicz, M., Kozlowski, C., and Walkowiak, W., Physicochem. Probl. Miner. Process, 2004, vol. 38, p. 131.

    CAS  Google Scholar 

  21. Shamsipur, M., Kazemi, S.Y. Azimi, G., Madaeni, S.S., Lippolis, V., Garau, A., and Isaia, F., J. Membr. Sci., 2003, vol. 215, p. 87.

    Article  CAS  Google Scholar 

  22. Nezhadali, A., and Rabani, N., Chinese Chem. Lett., 2011, vol. 22, p. 88.

    Article  CAS  Google Scholar 

  23. Rounaghi, G.H., and Kazemi, M.S., J. Incl. Phenom. Macrocycl. Chem., 2006, vol. 55, p. 347.

    Article  CAS  Google Scholar 

  24. Mohammad Zadeh Kakhki, R. and Rounaghi, G.H., J. Chem. Eng. Data, 2011, vol. 56, p. 3169.

    Article  Google Scholar 

  25. Rounaghi, G.H. and Khoshnood, R.S., J. Incl. Phenom. Macrocycl. Chem., 2006, vol. 55, p. 309.

    Article  CAS  Google Scholar 

  26. Hiratani, K., Chem. Lett., 1981, vol. 21.

  27. Shen, M.C., Wang, Z.L., Luo, Q.H., Gao, X., and Lu, G.Y., Acta Chim. Sin., 1991, vol. 49, p. 718.

    CAS  Google Scholar 

  28. Rounaghi, G.H., Khoshnood, R.S., and Arbab Zavvar, M.H., J. Incl. Phenom. Macrocycl. Chem., 2006, vol. 54, p. 247.

    Article  CAS  Google Scholar 

  29. Kadidas, C., Heftor, G., and Marcus, Y., Chem. Rev., 2002, vol. 100, p. 828.

    Google Scholar 

  30. Pedersen, C.J., J. Am. Chem. Soc., 1967, vol. 89, p. 7017.

    Article  CAS  Google Scholar 

  31. Frendsdor, H.K., J. Am. Chem. Soc., 1971, vol. 93, p. 600.

    Article  Google Scholar 

  32. McBride, D.W., Izatt, R.M., Lamb, J.D., and Christensen, J.J., in Inclusion Compounds. Physical Properties and Applications, Atwood, J.L., Davies, J.E., and MacNical, D.D., Eds., New York: Academic Press, 1984.

  33. Rounaghi, G.H., Kazemi, M.S., and Sadeghian, H., J. Incl. Phenom. Macrocycl. Chem., 2008, vol. 60, p. 79.

    Article  CAS  Google Scholar 

  34. Izatt, R.M., Bruening, R.L., Clark, G.A., Lamb, J.D., and Christensen, J.J., J. Membr. Sci., 1986, vol. 28, p. 77

    Article  CAS  Google Scholar 

  35. Jafari, S., Yaftian, M.R., and Parinejad, M., Sep. Purif. Technol., 2009, vol. 70, p. 118.

    Article  CAS  Google Scholar 

  36. Tukhvatullin, F.K., Atakhodzhaev, A.K., Osmanov, S.A., Klener, I.P., Zhumaboev, A., and Tashkenbaev, U.N., Russ. Phys. J., 1991, vol. 34, p. 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tarahomi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarahomi, S., Rounaghi, G.H. & Chamsaz, M. Study of competitive transport of some heavy metal cations across bulk liquid membranes containing phenylaza-15-crown-5 and cryptand 222 as carriers using flame atomic absorption spectrometry. Russ J Appl Chem 88, 1219–1228 (2015). https://doi.org/10.1134/S1070427215070174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427215070174

Keywords

Navigation