Skip to main content
Log in

Lanthanide Complexes with N,N-Bis-(2-hydroxy-5-nitrobenzylidene)-1,2-phenylenediamine Schiff Base Ligand: Synthesis, Characterization, Photophysical Properties, and Biological Activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A series of lanthanides(III) complexes containing Schiff base ligand, {[LnL(NO3).H2O]·xH2O {Ln: La, Pr, Nd, Sm, Eu, Gd, Tb, and Dy, H2L: N,N-bis-(2-hydroxy-5-nitro-benzylidene)-1,2-phenylenediamine Schiff base ligand}, have been synthesized by reaction of the ligand with Ln(NO3)3·xH2O in the presence of NaOH. Structures of these complexes have been characterized by elemental analysis, molar conductivity, thermal gravimetric and various spectral methods (IR, UV-Vis, 1H, and 13C NMR). The proposed formula, of the complexes consists of one Ln(III) ion with the coordination number of seven. Two coordination sites are occupied by one bi-dentate nitrate anion, another site is occupied by one water molecule and the remaining four coordination sites are occupied by one deprotonated tetra-dentate ligand molecule. Fluorescence emission spectra of Ln(III) complexes exhibit ligand-centred emission peak with a blue shift compared with that of free H2L. This can be explained on the basis of ligand-to-metal charge transfer (LMCT) that occurs upon L2 coordination to Ln(III) ions. Antibacterial activity of H2L and its Ln(III) complexes has been tested against some gram-positive and gram-negative bacterial strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Kaczmarek, M.T., Zabiszak, M., Nowak, M., and Jastrzab, R., Coord. Chem. Rev., 2018, vol. 370, p. 42. https://doi.org/10.1016/j.ccr.2018.05.012

    Article  CAS  Google Scholar 

  2. Liu, X. and Hamon, J.-R., Coord. Chem. Rev., 2019, vol. 389, p. 94. https://doi.org/10.1016/j.ccr.2019.03.010

    Article  CAS  Google Scholar 

  3. Uddin, M.N., Ahmed, S.S., and Alam, S.M.R., J. Coord. Chem., 2020, vol. 73, p. 3109. https://doi.org/10.1080/00958972.2020.1854745

    Article  CAS  Google Scholar 

  4. Acharjee, K., Sarkar, J., Deb, P., and Chackraborty, U., J. Plant Nutrition, 2017, vol. 41, p. 487. https://doi.org/10.1080/01904167.2017.1385810

    Article  CAS  Google Scholar 

  5. Priyanka, G., Anita, C., Dinesh, K., and Dinesh, K., Inorg. Chem. Comm., 2021, vol. 130, p. 108710. https://doi.org/10.1016/j.inoche.2021.108710

    Article  CAS  Google Scholar 

  6. Baleizão, C. and Garcia, H., Chem. Rev., 2006, vol. 106, p. 3987. https://doi.org/10.1021/cr050973n

    Article  CAS  PubMed  Google Scholar 

  7. Castro-Osma, J.A., Lamb, K.J., and North, M., ACS Catal. 2016, vol. 6, p. 5012. https://doi.org/10.1021/acscatal.6b01386

  8. Cozzi, P.G., Chem. Soc. Rev., 2004, vol. 33, p. 410. https://doi.org/10.1039/b307853c

    Article  CAS  PubMed  Google Scholar 

  9. Dalla Cort, A., De Bernardin, P., Forte, G., and Yafteh Mihan, F., Chem. Soc. Rev., 2010, vol. 39, p. 3863. https://doi.org/10.1039/b926222a

    Article  CAS  PubMed  Google Scholar 

  10. Erxleben, A., Inorg. Chim. Acta., 2018, vol. 472, p. 40. https://doi.org/10.1016/j.ica.2017.06.060

    Article  CAS  Google Scholar 

  11. Shaghaghi, Z., Kalantari, N., Kheyrollahpoor, M., and Haeili, M., J. Mol. Struct., 2019, p. 127107. https://doi.org/10.1016/j.molstruc.2019.127107

  12. Pouralimardan, O., Chamayou, A.-C., Janiak, C., and Hosseini-Monfared, H., Inorg. Chim. Acta., 2007, vol. 360, p. 1599. https://doi.org/10.1016/j.ica.2006.08.056

    Article  CAS  Google Scholar 

  13. Raman, N., Dhaveethu Raja, J., and Sakthivel, A., J. Chem. Sci., 2007, vol. 119, p. 303. https://doi.org/10.1007/s12039-007-0041-5

    Article  CAS  Google Scholar 

  14. Whitesell, J.K., Chem. Rev., 1989, vol. 89, p. 1581. https://doi.org/10.1021/cr00097a012

    Article  CAS  Google Scholar 

  15. Dalapati, S., Alam, M.A., Jana, S., and Guchhait, N., J. Fluorine Chem., 2011, vol. 132, p. 536. https://doi.org/10.1016/j.jfluchem.2011.05.02

    Article  CAS  Google Scholar 

  16. Giannicchi, I., Brissos, R., Ramos, D., Lapuente, J. de, Lima, J.C., Cort, A.D., and Rodríguez, L., Inorg. Chem., 2013, vol. 52, p. 9245. https://doi.org/10.1021/ic4004356

    Article  CAS  PubMed  Google Scholar 

  17. Naeimi, H. and Moradian, M., J. Coord. Chem., 2009, vol. 63, p. 156. https://doi.org/10.1080/00958970903225866

  18. Naeimi, H. and Moradian, M., J. Chem., 2013, vol. 2013, p. 1. https://doi.org/10.1155/2013/701826

  19. Kumari, S., Maddipoti, K., Das, B., and Ray, S., Inorg. Chem., 2019, vol. 58, p. 1527. https://doi.org/10.1021/acs.inorgchem.8b03031

    Article  CAS  PubMed  Google Scholar 

  20. Li, G., Chen, L., Bao, J., Li, T., and Mei, F., Appl. Catal. A: General, 2008, vol. 346, p. 134. https://doi.org/10.1016/j.apcata.2008.05.014

    Article  CAS  Google Scholar 

  21. Sarvestani, A.H. and Mohebbi, S., J. Chem. Res., 2006, vol. 4, p. 257. https://doi.org/10.3184/030823406776894229

    Article  Google Scholar 

  22. Alvarado-Monzón, J.C., López, J.A., de Riquer, G.A.A., Cristobal, C., Flores-Alamo, M., and Ruiz-Azuara, L., Polyhedron, 2019, vol. 161, p. 243. https://doi.org/10.1016/j.poly.2019.01.022

  23. Al Momani, W.M.A, Taha, Z.A., Ajlouni, A.M., Shaqra, Q.M.A., and Zouby, M.A., Asian Pac. J. Trop. Biomed., 2013, vol. 3, p. 367. https://doi.org/10.1016/s2221-1691(13)60078-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mikhalyova, E.A., Yakovenko, A.V., Zeller, M., Gavrilenko, K.S., Lofland, S.E., Addison, A.W., and Pavlishchuk, V.V., Inorg. Chim. Acta, 2014, vol. 414, p. 97. https://doi.org/10.1016/j.ica.2014.01.034

    Article  CAS  Google Scholar 

  25. Ren, M., Xu, Z.-L., Bao, S.-S., Wang, T.-T., Zheng, Z.-H., Ferreira, A.S., Zheng, L.M., and Carlos, L.D., Dalton Trans., 2016, vol. 45, p. 2974. https://doi.org/10.1039/c5dt03897a.Referencesin

    Article  CAS  PubMed  Google Scholar 

  26. Taha, Z., Ajlouni, A., and Al-Mustafa, J., Chem. Pap., 2013, vol. 67, p. 194. https://doi.org/10.2478/s11696-012-0262-z

    Article  CAS  Google Scholar 

  27. Xia, X., Lu, C., Zhao, B., and Yao, Y., RSC. Adv., 2019, vol. 9, p. 13749. https://doi.org/10.1039/c9ra01529a

    Article  CAS  Google Scholar 

  28. Yao, Y., Yin, H.-Y., Ning, Y., Wang, J., Meng, Y.-S., Huang, X., Zhang, W., Kang, L., and Zhang, J.-L., Inorg. Chem., 2018, vol. 58, p. 1806. https://doi.org/10.1021/acs.inorgchem.8b02376

    Article  CAS  PubMed  Google Scholar 

  29. Ajlouni, A.M., Taha, Z.A., Hijazi, A.K., and AlMomani, W. M., Appl. Organomet. Chem., 2018, vol. 32, p. e4536. https://doi.org/10.1002/aoc.4536

  30. Hijazi, A.K., Taha, Z.A., Ajlouni, A.M., AlMomani, M.W., Idris, M.I., and Hamra, E.A., Med. Chem., 2017, vol. 13, p. 77.

    Article  CAS  Google Scholar 

  31. Taha, Z.A., Ababneh, T.S., Hijazi, A.K., AbuSalem, Q., Ajlouni, A.M., and Ebwany, S., Luminescence, 2017, vol. 33, p. 79. https://doi.org/10.1002/bio.3375

    Article  CAS  PubMed  Google Scholar 

  32. Taha, Z.A., Hijazi, A.K., Ababneh, T., Imhidate, I., Ajlouni, A.M.,Al-Hassan, K.A., Mitzithra, C., Hamilakis, S., Danladi, F., and Altalafha, A.Y., J. Lumin., 2017, vol. 181, p. 230. https://doi.org/10.1016/j.jlumin.2016.09.019

    Article  CAS  Google Scholar 

  33. Taha, Z.A., Hijazi, A.K., and Al Momani, W.M., J. Mol. Struct., 2020, vol. 1220, p. 128712. https://doi.org/10.1016/j.molstruc.2020.12871

    Article  CAS  Google Scholar 

  34. Taha, Z.A. and Hijazi, A.K., J. Mol. Struct., 2021, vol. 1238, p. 130451. https://doi.org/10.1016/j.molstruc.2021.130451

    Article  CAS  Google Scholar 

  35. Vogel., A.I., A Text-Book of Quantitative Inorganic Analysis, Including Elementary Instrumental Analysis, London: Longmans, Green and Co., Ltd. Third Edition., Green, 1961, p 70.

  36. Hijazi, A.K., Taha, Z.A., Ibdah, A., Idris, I.M., and Al-Momani, W.M., Chem. Pap., 2021, vol. 75, p. 4611. https://doi.org/10.1007/s11696-021-01676-x

  37. Borras-Almenar, J.J., Coronado, E., Curely, J., Georges, R., and Gianduzzo, J.C., Inorg. Chem., 1994, vol. 33, p. 5171. https://doi.org/10.1021/ic00101a006

    Article  CAS  Google Scholar 

  38. Humphrey, R.E., Spectrochim. Acta, 1961, vol. 17, p. 93. https://doi.org/10.1016/0371-1951(61)80015-5

    Article  CAS  Google Scholar 

  39. Nemec, I., Herchel, R., Šilha, T., and Trávníček, Z., Dalton Trans., 2014, vol. 43, p. 15602. https://doi.org/10.1039/c4dt02025a

    Article  CAS  PubMed  Google Scholar 

  40. Kim, Y. and Jung, D.-Y., Inorg. Chem., 2000, vol. 39, p. 1470. https://doi.org/10.1021/ic991119f

    Article  CAS  PubMed  Google Scholar 

  41. Taha, Z.A., Ajlouni, A.M., Ababneh, T.S., Al-Momani, W., Hijazi, A.K., Al Masri, M., and Hammad, H., Struct. Chem., 2017, vol. 28, p. 1907. https://doi.org/10.1007/s11224-017-0975-2

    Article  CAS  Google Scholar 

  42. Tamboura, F.B., Diouf, O., Barry, A.H., Gaye, M., and Sall, A.S., Polyhedron, 2012, vol. 43, p. 97. https://doi.org/10.1016/j.poly.2012.06.025

    Article  CAS  Google Scholar 

  43. Claramunt, R.M., López, C., Santa María, M.D., Sanz, D., and Elguero, J., Prog. Nucl. Magn. Reson. Spectrosc., 2006, vol. 49, p. 169. https://doi.org/10.1016/j.pnmrs.2006.07.001

    Article  CAS  Google Scholar 

  44. Užarević, K., Rubčić, M., Stilinović, V., Kaitner, B., and Cindrić, M., J. Mol. Struct., 2010, vol. 984, p. 232. https://doi.org/10.1016/j.molstruc.2010.09.03

    Article  Google Scholar 

  45. Ali, I., Wani, W.A., and Saleem, K., Inorg. Met-Org. Nano-Met. Chem., 2013, vol. 43, p. 1162. https://doi.org/10.1080/15533174.2012.756898

    Article  CAS  Google Scholar 

  46. Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, p. 81. https://doi.org/10.1016/s0010

    Article  CAS  Google Scholar 

  47. Wang, X., Zhai, Q.-G., Li, S.-N., Jiang, Y.-C., and Hu, M.-C., Cryst. Growth Des., 2013, vol. 14, p. 177. https://doi.org/10.1021/cg401365x

    Article  CAS  Google Scholar 

  48. Zhang, X.-T., Fan, L.-M., Fan, W.-L., Li, B., Liu, G.-Z., Liu, X.-Z., and Zhao, X., Cryst. Growth Des., 2016, vol. 16, p. 3993. https://doi.org/10.1021/acs.cgd.6b00540

Download references

Funding

This work was supported by the Dean of Research at Jordan University of Science and Technology at JORDAN (grant no. 247/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyad A. Taha.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, Z.A., Hijazi, A.K., Al-Smadi, A.Y. et al. Lanthanide Complexes with N,N-Bis-(2-hydroxy-5-nitrobenzylidene)-1,2-phenylenediamine Schiff Base Ligand: Synthesis, Characterization, Photophysical Properties, and Biological Activity. Russ J Gen Chem 91, 2292–2303 (2021). https://doi.org/10.1134/S1070363221110177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221110177

Keywords:

Navigation