Skip to main content
Log in

Synthesis, crystal structures, luminescence and thermal properties of lanthanide complexes containing 2,5-dichlorobenzoic acid and 2,2:6′,2″-terpyridine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three novel ternary lanthanide complexes [Ln(2,5-DClBA)3(terpy)(H2O)] (Ln = Eu (1), Tb (2), Ho (3), 2,5-DClBA = 2,5-dichlorobenzoate, terpy = 2,2:6′,2″-terpyridine) have been successfully synthesized and characterized by single-crystal and powder X-ray diffraction. Complexes 13 are isostructural, and each metal center is nine-coordinated with distorted monocapped square antiprismatic coordination geometry. The mononuclear units are assembled into 1D, 2D, 3D supramolecular structures by the ππ stacking and halogen–halogen interactions. Thermal decomposition mechanisms of the title complexes were investigated by thermogravimetric analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state fluorescent properties of complexes 12 were studied at room temperature, and characteristic emission was observed for all complexes. Complex 1 exhibits the strong red emission, while the complex 2 is green under UV light. Moreover, the antibacterial activities of the complexes against Candida albicans, Escherichia coli and Staphylococcus aureus were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Carter KP, Thomas KE, Pope SJ, Holmberg RJ, Butcher RJ, Murugesu M. Supramolecular assembly of molecular rare-earth-3,5-dichlorobenzoic acid-2,2′:6′,2″-terpyridine materials: structural systematics, luminescence properties, and magnetic behavior. Inorg Chem. 2016;55(14):6902–15. doi:10.1021/acs.inorgchem.6b00408.

    Article  CAS  Google Scholar 

  2. Zong GC, Huo JX, Ren N, Zhang JJ, Qi XX, Gao J. Preparation, characterization and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline. Dalton Trans. 2015;44(33):14877–86. doi:10.1039/c5dt01969a.

    Article  CAS  Google Scholar 

  3. Faulkner S, Pope SJA, Burton-Pye BP. Lanthanide complexes for luminescence imaging applications. Appl Spectrosc Rev. 2005;40(1):1–31. doi:10.1081/asr-200038308.

    Article  CAS  Google Scholar 

  4. Lhoste J, Perez-Campos A, Henry N, Loiseau T, Rabu P, Abraham F. Chain-like and dinuclear coordination polymers in lanthanide (Nd, Eu) oxochloride complexes with 2,2′:6′,2″-terpyridine: synthesis, XRD structure and magnetic properties. Dalton Trans. 2011;40(36):9136–44. doi:10.1039/c1dt10485c.

    Article  CAS  Google Scholar 

  5. Guo X, Zhu G, Fang Q, Xue M, Tian G, Sun J. Synthesis, structure and luminescent properties of rare earth coordination polymers constructed from paddle-wheel building blocks. Inorg Chem. 2005;44(11):3850–5.

    Article  CAS  Google Scholar 

  6. Wei XH, Yang LY, Liao SY, Zhang M, Tian JL, Du PY. A series of rare earth complexes with novel non-interpenetrating 3D networks: synthesis, structures, magnetic and optical properties. Dalton Trans. 2014;43(15):5793–800. doi:10.1039/c3dt53112k.

    Article  CAS  Google Scholar 

  7. Kelly NR, Goetz S, Batten SR, Kruger PE. Coordination behaviour and network formation with 4,4′,6,6′-tetracarboxy-2,2′-bipyridine and 4,4′-dicarboxy-2,2′-bipyridineligands with rare and alkaline earth metals. CrystEngComm. 2008;10(1):68–78. doi:10.1039/b711469a.

    Article  CAS  Google Scholar 

  8. Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes. ACS Nano. 2016;10(6):5856–63. doi:10.1021/acsnano.6b00770.

    Article  CAS  Google Scholar 

  9. Bünzli J-CG. Lanthanide luminescent bioprobes (LLBs). Acs Med Chem Lett. 2009;38(2):104–9. doi:10.1246/cl.2009.104.

    Article  Google Scholar 

  10. Gribkov DV, Hultzsch KC, Hampel F. Synthesis and characterization of new biphenolate and binaphtholate rare-Earth-metal amido complexes: catalysts for asymmetric olefin hydroamination/cyclization. Chemistry. 2003;9(19):4796–810. doi:10.1002/chem.200304975.

    Article  CAS  Google Scholar 

  11. Zhan CH, Wang F, Kang Y, Zhang J. Lanthanide-thiophene-2,5-dicarboxylate frameworks: ionothermal synthesis, helical structures, photoluminescent properties, and single-crystal-to-single-crystal guest exchange. Inorg Chem. 2012;51(1):523–30. doi:10.1021/ic201986m.

    Article  CAS  Google Scholar 

  12. Marques LF, Santos HP, Correa CC, Resende JALC, da Silva RR, Ribeiro SJL. Construction of a series of rare earth metal-organic frameworks supported by thiophenedicarboxylate linker: synthesis, characterization, crystal structures and near-infrared/visible luminescence. Inorg Chim Acta. 2016;451:41–51. doi:10.1016/j.ica.2016.07.008.

    Article  CAS  Google Scholar 

  13. Einkauf JD, Kelley TT, Chan BC, de Lill DT. Rethinking sensitized luminescence in lanthanide coordination polymers and MOFs: band sensitization and water enhanced eu luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb). Inorg Chem. 2016;55(16):7920–7. doi:10.1021/acs.inorgchem.6b00878.

    Article  CAS  Google Scholar 

  14. Lahoud MG, Muniz EC, Arroyos G, Fávaro MA, Davolos MR, D’Vries RF. Rare earth coordination dinuclear compounds constructed from 3,5-dicarboxypyrazolate and succinate intermetallic bridges. New J Chem. 2016;40(6):5338–46. doi:10.1039/c6nj00140h.

    Article  CAS  Google Scholar 

  15. Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. J Photochem Photobiol C. 2004;5(3):183–202. doi:10.1016/j.jphotochemrev.2004.10.003.

    Article  CAS  Google Scholar 

  16. Eliseeva SV, Bunzli JC. Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev. 2010;39(1):189–227. doi:10.1039/b905604c.

    Article  CAS  Google Scholar 

  17. Bünzli J-CG, Comby S, Chauvin A-S, Vandevyver CDB. New opportunities for lanthanide luminescence. J Rare Earth. 2007;25(3):257–74. doi:10.1016/s1002-0721(07)60420-7.

    Article  Google Scholar 

  18. De Sa G, Malta O, de Mello Donegá C, Simas A, Longo R, Santa-Cruz P. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordin Chem Rev. 2000;196(1):165–95.

    Article  Google Scholar 

  19. Liu L, Xu Z, Lou Z, Zhang F, Sun B, Pei J. Luminescent properties of a novel terbium complex Tb(o-BBA)3(phen). J Rare Earth. 2006;24(2):253–6. doi:10.1016/s1002-0721(06)60104-x.

    Article  Google Scholar 

  20. Zong G-C, Ren N, Zhang J-J, Qi X-X, Gao J. Lanthanide complexes with 3-bromine-4-methyl benzoic acid and 1,10-phenanthroline. J Therm Anal Calorim. 2015;123(1):105–16. doi:10.1007/s10973-015-4901-9.

    Article  Google Scholar 

  21. Qi X-X, Ren N, Xu S-L, Zhang J-J, Zong G-C, Gao J. Lanthanide complexes with 3,4,5-triethoxybenzoic acid and 1,10-phenanthroline: synthesis, crystal structures, thermal decomposition mechanism and phase transformation kinetics. RSC Adv. 2015;5(12):9261–71. doi:10.1039/c4ra12063a.

    Article  CAS  Google Scholar 

  22. Koroteev PS, Dobrokhotova ZV, Ilyukhin AB, Efimov NN, Kirdyankin DI, Tyurin AV. Lanthanide cymantrenecarboxylate complexes with an Ln: Mn ratio of 1:2 as precursors for LnMn2O5 phases. Synthesis, structure, physicochemical properties, and thermal decomposition. Polyhedron. 2013;65:110–21. doi:10.1016/j.poly.2013.08.024.

    Article  CAS  Google Scholar 

  23. Zheng J-R, Ren N, Zhang J-J, Zhang D-H, Yan L-Z, Wu K-Z. Synthesis, characterization and thermochemical properties of four new lanthanide complexes with 3,5-diisopropylsalicylic acid and 1,10-phenanthroline. Therm Acta. 2012;547:31–7. doi:10.1016/j.tca.2012.08.005.

    Article  CAS  Google Scholar 

  24. Carter KP, Zulato CHF, Cahill CL. Exploring supramolecular assembly and luminescent behavior in a series of RE-p-chlorobenzoic acid-1,10-phenanthroline complexes. CrystEngComm. 2014;16(44):10189–202. doi:10.1039/c4ce01806k.

    Article  CAS  Google Scholar 

  25. Matthes PR, Nitsch J, Kuzmanoski A, Feldmann C, Steffen A, Marder TB. The series of rare earth complexes [Ln2Cl6 (mu-4,4′-bipy)(py)6], Ln = Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4′-bipyridine. Chemistry. 2013;19(51):17369–78. doi:10.1002/chem.201302504.

    Article  CAS  Google Scholar 

  26. Carter KP, Pope SJA, Cahill CL. A series of Ln-p-chlorobenzoic acid–terpyridine complexes: lanthanide contraction effects, supramolecular interactions and luminescent behavior. CrystEngComm. 2014;16(10):1873. doi:10.1039/c3ce42267d.

    Article  CAS  Google Scholar 

  27. Ahmed Z, Iftikhar K. Sensitization of visible and NIR emitting lanthanide(III) ions in noncentrosymmetric complexes of hexafluoroacetylacetone and unsubstituted monodentate pyrazole. J Phys Chem A. 2013;117(44):11183–201. doi:10.1021/jp403668j.

    Article  CAS  Google Scholar 

  28. Feng R, Jiang F-L, Wu M-Y, Chen L, Yan C-F, Hong M-C. Structures and photoluminescent properties of the lanthanide coordination complexes with hydroxyquinoline carboxylate ligands. Cryst Growth Des. 2010;10(5):2306–13. doi:10.1021/cg100026d.

    Article  CAS  Google Scholar 

  29. Sabbatini N, Guardigli M, Manet I. Antenna effect in encapsulation complexes of lanthanide ions. Handb Phys Chem Rare Earths. 1996;23:69–119.

    Article  CAS  Google Scholar 

  30. Kirby AF, Richardson F. Detailed analysis of the optical absorption and emission spectra of europium (3 +) in the trigonal (C3) Eu (DBM) 3. H2O system. J Phys Chem. 1983;87(14):2544–56.

    Article  CAS  Google Scholar 

  31. Rodrigues MO, da Costa Junior NB, de Simone CA, Araujo AA, Brito-Silva A, Paz FAA. Theoretical and experimental studies of the photoluminescent properties of the coordination polymer [Eu (DPA)(HDPA)(H2O) 2] ⊙ 4H2O. J Phys Chem B. 2008;112(14):4204–12.

    Article  CAS  Google Scholar 

  32. Wang Y, Shen P-P, Ren N, Zhang J-J, Geng L-N, Wang S-P. A series of lanthanide complexes with different N-donor ligands: synthesis, structures, thermal properties and luminescence behaviors. RSC Adv. 2016;6(75):70770–80. doi:10.1039/c6ra11393a.

    Article  CAS  Google Scholar 

  33. Zhao B, Chen X-Y, Cheng P, Liao D-Z, Yan S-P, Jiang Z-H. Coordination polymers containing 1D channels as selective luminescent probes. JACS. 2004;126(47):15394–5.

    Article  CAS  Google Scholar 

  34. Huang J, Xu Y, Chen X, Xu D, Xu Y, He Q. Synthesis, characterization and properties of some rare earth complexes with 2,6-pyridine dicarboxylic acid and α-Picolinic acid. J Rare Earth. 2012;30(6):586–91. doi:10.1016/s1002-0721(12)60095-7.

    Article  CAS  Google Scholar 

  35. Song YM, Xu JP, Ding L, Hou Q, Liu JW, Zhu ZL. Syntheses, characterization and biological activities of rare earth metal complexes with curcumin and 1,10-phenanthroline-5,6-dione. J Inorg Biochem. 2009;103(3):396–400. doi:10.1016/j.jinorgbio.2008.12.001.

    Article  CAS  Google Scholar 

  36. Chaudhary A, Bansal N, Gajraj A, Singh RV. Antifertility, antibacterial, antifungal and percent disease incidence aspects of macrocyclic complexes of manganese(II). J Inorg Biochem. 2003;96(2–3):393–400. doi:10.1016/s0162-0134(03)00157-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research work was supported by the National Natural Science Foundation of China (No. 21473049) and the Natural Science Foundation of Hebei Province (No. B2016205207).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Ren or Jian-Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QQ., Wu, XH., Ren, N. et al. Synthesis, crystal structures, luminescence and thermal properties of lanthanide complexes containing 2,5-dichlorobenzoic acid and 2,2:6′,2″-terpyridine. J Therm Anal Calorim 131, 1237–1248 (2018). https://doi.org/10.1007/s10973-017-6591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6591-y

Keywords

Navigation