Skip to main content
Log in

Kinetics of Thermal Decomposition of Yttrium and Samarium Hydroxides and Sm(OH)3@Y(OH)3 Compound with a Core–Shell Nanostructure

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The decomposition mechanisms of hydrated hydroxides of rare-earth metals Sm(OH)3·(H2O)gel·nH2O and Y(OH)3·(H2O)gel·nH2O, and also compound [Sm(OH)3·(H2O)gel·nH2O]q@[Y(OH)3·(H2O)gel·nH2O]p with a core–shell nanostructure were studied. In the course of the thermal treatment of hydroxides in the range of 25–900°C, stages of successive phase transformations were observed. The Avraami-Erofeev model of topochemical reactions describes the formation of phases in the systems under study with the highest correlation coefficient. The kinetics of successive dehydration and dehydroxylation of the above compounds was studied, kinetic equations of the topochemical reactions were presented, and apparent activation energies and the preexponents of the reactions were calculated. The activation energy for polycondensation of the compound with a core-shell nanostructure is lower than that of individual hydrates of samarium and yttrium hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sotnikov, A.V. and Bakovets, V.V., Inorg. Mater., 2014, vol. 50, no. 12, p. 1214. https://doi.org/10.1134/S002016851412019X

    Article  CAS  Google Scholar 

  2. Bakovets, V.V., Sotnikov, A.V., and Korolkov, I.V., J. Am. Ceram. Soc., 2017, vol. 100, no. 4, p. 1320. https://doi.org/10.1111/jace.14692

    Article  CAS  Google Scholar 

  3. Ayodele, B.V., Hossain, M.A., Chong, S.L., Soh, J.C., Abdullah, S., Khan, M.R., and Cheng, C.K., J. Therm. Anal. Cal., 2016, vol. 125, p. 423. https://doi.org/10.1007/s10973-016-5450-6

    Article  CAS  Google Scholar 

  4. Chang, C. and Mao, D., Int. J. Chem. Kinet., 2006, vol. 39, no. 2, p. 75. https://doi.org/10.1002/kin.20221

    Article  CAS  Google Scholar 

  5. Mohammadi, M. and Salarirad, M.M., Ind. Engin. Chem. Res., 2013, vol.52, no. 22, p. 7333. https://doi.org/10.1021/ie400127q

    Article  CAS  Google Scholar 

  6. Logvinenko, V.A., Aliev, S.B., Bolotov, V.A., Dybtsev, D.N., and Fedin, V.P., J. Therm. Anal. Cal., 2017, vol. 127, no. 1, p. 779. https://doi.org/10.1007/s10973-016-5398-6

    Article  CAS  Google Scholar 

  7. Bell, L.E., Science, 2008, vol. 321, p. 1457. https://doi.org/10.1126/science.1158899

    Article  CAS  PubMed  Google Scholar 

  8. Aswal, D.K., Basu, R., and Singh, A., En. Conv. Man., 2016, vol. 114, p. 50. https://doi.org/10.1016/j.enconman.2016.01.065

    Article  Google Scholar 

  9. Zhu, T., Liu, Y., Fu, C., Heremans, J.P., Snyder, J.G., and Zhao, X., Adv. Mater., 2017, vol. 29, p. 1605884. https://doi.org/10.1002/adma.201605884

    Article  CAS  Google Scholar 

  10. Sotnikov, A.V., Bakovets, V.V., Korotaev, E.V., Trubina, S.V., and Zaikovskiy, V.I., Mater. Res. Bull., 2020, vol. 131, p. 110963. https://doi.org/10.1016/j.materresbull.2020.110963

    Article  CAS  Google Scholar 

  11. Sotnikov, A.V., Ohta, M., and Jood, P., ACS Omega, 2020, vol. 5, no. 22, p. 13006. https://doi.org/10.1021/acsomega.0c00908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sotnikov, A.V., Bakovets, V.V., Agazhanov, A.Sh., Stankus, S.V., Pishchur, D.P., and Sokolov, V.V., Phys. Sol. St., 2018, vol. 60, no. 3, p. 487. https://doi.org/10.1134/S1063783418030290

    Article  CAS  Google Scholar 

  13. Bakovets, V.V., Sotnikov, A.V., Agazhanov, A.Sh., Stankus, S.V., Korotaev, E.V., Pishchur, D.P., and Shkatulov, A.I., J. Am. Ceram. Soc., 2018, vol. 101, no. 10, p. 4773. https://doi.org/10.1111/jace.15735

    Article  CAS  Google Scholar 

  14. Luguev, S.M., Lugueva, N.V., and Sokolov, V.V., Therm. Aeromech., 2012, vol. 19, no. 2, p. 343. https://doi.org/10.1134/S0869864312020175

    Article  Google Scholar 

  15. Gadzhiev, G.G., Ismailov, Sh.M., Abdullaev, Kh.Kh., Khadimov, M.M., and Omarov, Z.M., High. Temper., 2001, vol. 39, no. 3, p. 407. https://doi.org/10.1023/A:1017510725871

    Article  CAS  Google Scholar 

  16. Sotnikov, A.V., Bakovets, V.V., Ohta, M., Agazhanov, A.Sh., and Stankus, S.V., Phys. Solid State, 2020, vol. 62, no. 4, p. 611. https://doi.org/10.1134/S1063783420040216

    Article  CAS  Google Scholar 

  17. Ohta, M., Hirai, S., and Kuzuya, T., J. Electron. Mater., 2011, vol. 40, no. 5, p. 537. https://doi.org/10.1007/s11664-010-1436-5

    Article  CAS  Google Scholar 

  18. Bakovets, V.V., Sotnikov, A.V., Agazhanov, A.Sh., and Stankus, S.V., Therm. Aeromech., 2020, vol. 27, no. 3, p. 439. https://doi.org/10.1134/S0869864320030129

    Article  Google Scholar 

  19. He, J., Kanatzidis, M.G., and Dravid, V.P., Mater. Today, 2013, vol. 16, no. 5, p. 166. https://doi.org/10.1016/j.mattod.2013.05.004

    Article  CAS  Google Scholar 

  20. Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., and Chen, G., Energy Environ. Sci., 2012, vol. 5, no. 1, p. 5147. https://doi.org/10.1039/C1EE02497C

    Article  Google Scholar 

  21. Shevelkov, A.V., Russ. Chem. Rev., 2008, vol. 77, no. 1, p. 1. https://doi.org/10.1070/RC2008v077n01ABEH003746

    Article  CAS  Google Scholar 

  22. Snyder, G.J. and Toberer, E.S., Nat. Mater., 2008, vol. 7, no. 2, p. 105. https://doi.org/10.1038/nmat2090

    Article  CAS  PubMed  Google Scholar 

  23. Liu, W., Jie, Q., Kim, H.S., and Ren, Z., Acta Mater., 2008, vol. 87, no. 155.P. 357. https://doi.org/10.1016/j.actamat.2014.12.042

  24. Zhao, L.-D., He, J., Wu, C.-I., Hogan, T.P., Zhou, X., Uher, C., Dravid, V.P., and Kanatzidis, M.G., J. Am. Chem. Soc., 2012, vol. 134, no. 18, p. 7902. https://doi.org/10.1021/ja301772w

    Article  CAS  PubMed  Google Scholar 

  25. Rowe, D.M., Handbook of Thermoelectrics, New York: CRS Press, 1995.

  26. Golubkov, V.V., Kazanin, M.M., Kaminskii, V.V., Solov’ev, S.M., and Trushnikova, L.N., Inorg. Mater., 2003, vol. 39, no. 12, p. 1251. https://doi.org/10.1023/B:INMA.0000008909.13771.f3

    Article  CAS  Google Scholar 

  27. Iler, R.K., The Chemistry of Silica, New York: Wiley-Interscience Publication, John Wiley, 1979.

  28. Logvinenko, V.A., Bakovets, V.V., and Trushnikova, L.N., J. Therm. Anal. Cal., 2014, vol. 115, p. 1. https://doi.org/10.1007/s10973-013-3274-1

    Article  CAS  Google Scholar 

  29. Lu, B., Li, J-G., and Sakka, Y., Sci. Tech. Adv. Mater., 2013, vol. 14, p. 064202. https://doi.org/10.1088/1468-6996/14/6/064202

    Article  CAS  Google Scholar 

  30. Bakovets, V.V., Trushnikova, L.N., Korolkov, I.V., Plyusnin, P.E., Dolgovesova, I.P., Pivovarova, T.D., and Alferova, N.I., Russ. J. Gen. Chem., 2013, vol. 83, no. 1, p. 1. https://doi.org/10.1134/S1070363213010015

    Article  CAS  Google Scholar 

  31. Bakovets, V.V., Trushnikova, L.N., Plyusnin, P.E., Korolkov, I.V., Dolgovesova, I.P., Pivovarova, T.D., and Savintseva, S.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 10, p. 1808. https://doi.org/10.1134/S1070363213100034

    Article  CAS  Google Scholar 

  32. Li, J-G., Li, X., Sun, X., and Ishigaki, T., J. Phys. Chem. (C), 2008, vol. 112, p. 11707. https://doi.org/10.1021/jp802383a

  33. Meng, A.C., Braun, M.R., Wang, Y., Peng, S., Tan, W., Lentz, J.Z., Xue, M., Pakzad, A., Marshall, A.F., Harris, J.S., Cai, W., and McIntyre, P.C., Mat. Today, 2020, vol. 40, p. 101. https://doi.org/10.1016/j.mattod.2020.05.019

    Article  CAS  Google Scholar 

  34. NETZSCH Proteus Software for Thermal Analysis v.6.1.0 – NETZSCH-Gerätebau GmbH–Selb/Bayern, Germany. 2013.

  35. Netzsch Thermokinetics, http://www.therm-soft.com/english/kinetics.htm

  36. Kissinger, H.E., Anal. Chem., 1957, vol. 29, no. 11, p. 1702. https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  37. Friedman, H.L., J. Pol. Sci., 1963, vol. 6, p. 183. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  38. Ozawa, T., Bull. Chem. Soc. Japan, 1965, vol. 38, p. 1881. https://doi.org/10.1246/bcsj.38.1881

    Article  CAS  Google Scholar 

  39. Ozawa, T., Thermochim. Acta, 1992, vol. 203, p. 159. https://doi.org/10.1016/0040-6031(92)85192-X

    Article  CAS  Google Scholar 

  40. Flynn, J.H. and Wall, L.A., J. Res. Nat. Bur. Stand., 1966, vol. 70, p. 478. https://doi.org/10.1016/jres.070a.043

    Article  Google Scholar 

  41. Opfermann, J. and Kaisersberger, E., Thermochim. Acta, 1992, vol. 203, p. 167. https://doi.org/10.1016/0040-6031(92)85193-Y

    Article  CAS  Google Scholar 

  42. Opfermann, J., Kaisersberger, E., Flammersheim, H.J., Thermochim. Acta, 2002, vol. 391, p. 119. https://doi.org/10.1016/S0040-6031(02)00169-7

    Article  CAS  Google Scholar 

  43. Vyazovkin, S., J. Therm. Anal. Calorim., 2006, vol. 83, p. 45. https://doi.org/10.1007/s10973-005-7044-6

    Article  CAS  Google Scholar 

  44. Vyazovkin, S., Burnham, A.K., Criado, J.M., Luis, A., Perez-Maqueda, L.A., Popescu, C., and Sbirrazzuoli, N., Therm. Acta, 2011, vol. 520, p. 1. https://doi.org/10.1016/j.tca.2020.178597

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to T.D. Pivovarova (Nikolaev Institute of Inorganic Chemistry SB RAS) for assistance in the synthesis of samarium and yttrium hydroxides and V.A. Logvinenko (Nikolaev Institute of Inorganic Chemistry SB RAS) for assistance in interpreting the results.

Funding

The study was carried out with financial support within the framework of the scientific project of the President of the Russian Federation no. MK-3688.2021.1.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sotnikov.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 7, pp. 1108–1119 https://doi.org/10.31857/S0044460X21070155.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, A.V., Bakovets, V.V. & Plyusnin, P.E. Kinetics of Thermal Decomposition of Yttrium and Samarium Hydroxides and Sm(OH)3@Y(OH)3 Compound with a Core–Shell Nanostructure. Russ J Gen Chem 91, 1368–1378 (2021). https://doi.org/10.1134/S107036322107015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036322107015X

Keywords:

Navigation