Skip to main content
Log in

Pseudo-Five-Component Stereoselective Synthesis of Highly Functionalized 3-Azabicyclo[3.3.1]nona-2,7-dienes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The reaction of aromatic aldehydes with malononitrile, ethyl or butyl cyanoacetate and acetylacetone in the presence of NaOH under mild conditions (EtOH, 25°C) led to the formation of new series of (1S,5R,6R,9R)/(1R,5S,6S,9S)-2-amino-6,9-diaryl-7-acetyl-8-methyl-4-oxo-5-cyano-3-azabicyclo[3.3.1]nona-2,7-diene-1-carboxylic acids esters. A plausible mechanism of the cascade reaction was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Litvinov, V.P., Russ. Chem. Rev., 2003, vol. 72, no. 1, p. 69. https://doi.org/10.1070/RC2003v072n01ABEH000764

    Article  CAS  Google Scholar 

  2. Litvinov, V.P., Russ. Chem. Rev., 1999, vol. 68, no. 9, p. 737. https://doi.org/10.1070/RC1999v068n09ABEH000533

    Article  CAS  Google Scholar 

  3. Dyachenko, V.D., Dyachenko, I.V., and Nenajdenko, V.G., Russ. Chem. Rev., 2018, vol. 87, no. 1, p. 1. https://doi.org/10.1070/RCR4760

    Article  CAS  Google Scholar 

  4. Dotsenko, V.V., Krivokolysko, S.G., and Semenova, A.M., Chem. Heterocycl. Compd., 2018, vol. 54, no. 11, p. 989. https://doi.org/10.1007/s10593-018-2383-y

    Article  CAS  Google Scholar 

  5. Shaabani, A. and Hooshmand, S.E., Mol. Divers., 2018, vol. 22, no. 1, p. 207. https://doi.org/10.1007/s11030-017-9807-y

    Article  CAS  PubMed  Google Scholar 

  6. Voskressensky, L.G., Festa, A.A., and Varlamov, A.V., Tetrahedron, 2014, vol. 70, no. 3, p. 551. https://doi.org/10.1016/j.tet.2013.11.011

    Article  CAS  Google Scholar 

  7. Shestopalov, A.M., Shestopalov, A.A., and Rodinovskaya, L.A., Synthesis, 2008, vol. 2008, no. 1, p. 1. https://doi.org/10.1055/s-2007-990942

    Article  CAS  Google Scholar 

  8. Jiang, B. and Tu, S.J., Chimia, 2011, vol. 65, no. 12, p. 925. https://doi.org/10.2533/chimia.2011.925

    Article  CAS  PubMed  Google Scholar 

  9. Sharanin, Yu.A., Goncharenko, M.P., and Litvinov, V.P., Russ. Chem. Rev., 1998, vol. 67, no. 5, p. 393. https://doi.org/10.1070/RC1998v067n05ABEH000371

    Article  Google Scholar 

  10. Salem, M.A., Helel, M.H., Gouda, M.A., Ammar, Y.A., and El-Gaby, M.S.A., Synth. Commun., 2018, vol. 48, no. 4, p. 345. https://doi.org/10.1080/00397911.2017.1394468

    Article  CAS  Google Scholar 

  11. Litvinov, V.P., Dotsenko, V.V., and Krivokolysko, S.G., Russ. Chem. Bull., 2005, vol. 54, no. 4, p. 864. https://doi.org/10.1007/s11172-005-0333-1

    Article  CAS  Google Scholar 

  12. Litvinov, V.P., Dotsenko, V.V., and Krivokolysko, S.G., Adv. Heterocycl. Chem., 2007, vol. 93, p. 117. https://doi.org/10.1016/S0065-2725(06)93003-7

    Article  CAS  Google Scholar 

  13. Dotsenko, V.V., Buryi, D.S., Lukina, D.Yu., and Krivokolysko, S.G., Russ. Chem. Bull., 2020, vol. 69, no. 10, p. 1829. https://doi.org/10.1007/s11172-020-2969-2

    Article  CAS  Google Scholar 

  14. Elnagdi, M.H., Moustafa, M.S., Al-Mousawi, S.M., Mekheimer, R.A., and Sadek, K.U., Mol. Divers., 2015, vol. 19, no. 3, p. 625. https://doi.org/10.1007/s11030-015-9594-2

    Article  CAS  PubMed  Google Scholar 

  15. Abdel-Wahab, B.F., El-Mansy, M.F., and Khidre, R.E., J. Iran. Chem. Soc., 2013, vol. 10, no. 6, p. 1085. https://doi.org/10.1007/s13738-013-0244-2

    Article  CAS  Google Scholar 

  16. Dotsenko, V.V., Frolov, K.A., and Krivokolysko, S.G., Chem. Heterocycl. Compd., 2013, vol. 49, no. 5, p. 657. https://doi.org/10.1007/s10593-013-1296-z

    Article  CAS  Google Scholar 

  17. Jiang, B., Rajale, T., Wever, W., Tu, S.J., and Li, G., Chem. Asian J., 2010, vol. 5, no. 11, p. 2318. https://doi.org/10.1002/asia.201000310

    Article  CAS  PubMed  Google Scholar 

  18. Izbrannye metody sinteza i modifikatsii geterotsiklov (Selected Methods of Synthesis and Modification of Heterocycles), Kartsev, V.G., Ed., Moscow: IBS PRESS, 2003, vol. 2, p. 534.

  19. Myrboh, B., Mecadon, H., Rohman, M.R., Rajbangshi, M., Kharkongor, I., Laloo, B.M., Kharbangar, I., and Kshiar, B., Org. Prep. Proc. Int., 2013, vol. 45, no. 4, p. 253. https://doi.org/10.1080/00304948.2013.798566

    Article  CAS  Google Scholar 

  20. Tashrifi, Z., Mohammadi-Khanaposhtani, M., Hamedifar, H., Larijani, B., Ansari, S., and Mahdavi, M., Mol. Divers., 2019, vol. 24, p. 1385. https://doi.org/10.1007/s11030-019-09994-9

    Article  CAS  PubMed  Google Scholar 

  21. Litvinov, Yu.M. and Shestopalov, A.M., Adv. Heterocycl. Chem., 2011, vol. 103, p. 175. https://doi.org/10.1016/B978-0-12-386011-8.00003-4

    Article  CAS  Google Scholar 

  22. Aslam, N., White, J.M., Zafar, A.M., Jabeen, M., Ghafoor, A., Sajid, N., Noreen, S., and Khan, M.A., Arkivoc, 2018, pt vi, p. 139. https://doi.org/10.24820/ark.5550190.p010.622

  23. Sadek, K.U., Mekheimer, R.A.H., Abd-Elmonem, M., Abdel-Hameed, A., and Elnagdi, M.H., Tetrahedron: Asym., 2017, vol. 28, no. 11, p. 1462. https://doi.org/10.1016/j.tetasy.2017.10.020

    Article  CAS  Google Scholar 

  24. Maleki, B., Org. Prep. Proc. Int., 2016, vol. 48, no. 1, p. 81. https://doi.org/10.1080/00304948.2016.1127104

    Article  CAS  Google Scholar 

  25. El-Agrody, A.M. and Afifi, T.H., Heterocycles, 2014, vol. 89, no. 7, p. 1557. https://doi.org/10.3987/REV-14-793

    Article  CAS  Google Scholar 

  26. Sonsona, I.G., Marqués-López, E., and Herrera, R.P., Symmetry, 2015, vol. 7, no. 3, p. 1519. https://doi.org/10.3390/sym7031519

    Article  CAS  Google Scholar 

  27. Patil, S.A., Patil, S.A., and Patil, R., Future Med. Chem., 2015, vol. 7, no. 7, p. 893. https://doi.org/10.4155/fmc.15.38

    Article  CAS  PubMed  Google Scholar 

  28. Dotsenko, V.V., Ismiev, A.I., Khrustaleva, A.N., Frolov, K.A., Krivokolysko, S.G., Chigorina, E.A., Snizhko, A.P., Gromenko, V.M., Bushmarinov, I.S., Askerov, R.K., Pekhtereva, T.M., Suykov, S.Yu., Papayanina, E.S., Mazepa, A.V., and Magerramov, A.M., Chem. Heterocycl. Compd., 2016, vol. 52. N. 7, p. 473. https://doi.org/10.1007/s10593-016-1918-3

    Article  CAS  Google Scholar 

  29. Ismiyev, A.I., Dotsenko, V.V., Aksenov, N.A., Aksenova, I.V., and Magerramov, A.M., Russ. Chem. Bull., 2020, vol. 69, no. 10, p. 1938. https://doi.org/10.1007/s11172-020-2982-5

    Article  CAS  Google Scholar 

  30. Ismiyev, A.I., Shoaib, M., Dotsenko, V.V., Ganbarov, K.G., Israilova, A.A., and Magerramov, A.M., Russ. J. Gen. Chem., 2020, vol. 90, no. 8, p. 1418. https://doi.org/10.1134/S1070363220080071

    Article  CAS  Google Scholar 

  31. Ismiev, A.I., Dotsenko, V.V., Aksenov, N.A., Mamedova, G.Z., and Magerramov, A.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1533. https://doi.org/10.1134/S1070363218070289

    Article  CAS  Google Scholar 

  32. Dotsenko, V.V., Khrustaleva, A.N., Frolov, K.A., Aksenov, N.A., Aksenova, I.V., and Krivokolysko, S.G., Russ. J. Gen. Chem., 2021, vol. 91, no. 1, p. 44. https://doi.org/10.1134/S1070363221010047

    Article  CAS  Google Scholar 

  33. Sharanin, Yu.A., Promonenkov, V.K., and Sharanina, L.G., J. Org. Chem. USSR, 1982, vol. 18, p. 544.

    Google Scholar 

  34. Higashiyama, K. and Otomasu, H., Chem. Pharm. Bull., 1980, vol. 28, no. 2, p. 648. https://doi.org/10.1248/cpb.28.648

    Article  CAS  Google Scholar 

  35. Ibrahim, N.S., Heterocycles, 1986, vol. 24, no. 4, p. 935. https://doi.org/10.3987/R-1986-04-0935

    Article  CAS  Google Scholar 

  36. Shemchuk, L.A., Chernykh, V.P., and Red’kin, R.G., Russ. J. Org. Chem., 2008, vol. 44, no. 12, p. 1789. https://doi.org/10.1134/S1070428008120117

    Article  CAS  Google Scholar 

  37. Mortikov, V.Yu., Litvinov, Yu.M., Shestopalov, A.A., Rodinovskaya, L.A., and Shestopalov, A.M., Russ. Chem. Bull., 2008, vol. 57, no. 11, p. 2373. https://doi.org/10.1007/s11172-008-0338-7

    Article  CAS  Google Scholar 

  38. Chen, W.B., Wu, Z.J., Pei, Q.L., Cun, L.F., Zhang, X.M., and Yuan, W.C., Org. Lett., 2010, vol. 12, no. 14, p. 3132. https://doi.org/10.1021/ol1009224

    Article  CAS  PubMed  Google Scholar 

  39. Abdel-Latif, F.F., Mekheimer, R.A., Mashaly, M.M., and Ahmed, E.K., Collect. Czech. Chem. Commun., 1994, vol. 59, no. 5, p. 1235. https://doi.org/10.1135/cccc19941235

    Article  CAS  Google Scholar 

  40. Ameen, M.A., Motamed, S.M., and Abdel-Latif, F.F., Chin. Chem Lett., 2014, vol. 25, no. 2, p. 212. https://doi.org/10.1016/j.cclet.2013.11.041

    Article  CAS  Google Scholar 

  41. Saeedi, M., Heravi, M.M., Beheshtiha, Y.S., and Oskooie, H.A., Tetrahedron, 2010, vol. 66, no. 29, p. 5345. https://doi.org/10.1016/j.tet.2010.05.067

    Article  CAS  Google Scholar 

  42. García-Font, N., Hayour, H., Belfaitah, A., Pedraz, J., Moraleda, I., Iriepa, I., Bouraiou, A., Chioua, M., Marco-Contelles, J., and Oset-Gasque, M.J., Eur. J. Med. Chem., 2016, vol. 118, P. 178. https://doi.org/10.1016/j.ejmech.2016.04.023

  43. Khodairy, A., Ali, A.M., Aboelez, M.O., and El-Wassimy, M.T., J. Heterocycl. Chem., 2017, vol. 54, no. 2, p. 1442. https://doi.org/10.1002/jhet.2730

    Article  CAS  Google Scholar 

  44. Guo, R.Y., An, Z.M., Mo, L.P., Wang, R.Z., Liu, H.X., Wang, S.X., and Zhang, Z.H., ACS Comb. Sci., 2013, vol. 15, no. 11, p. 557. https://doi.org/10.1021/co400107j

    Article  CAS  PubMed  Google Scholar 

  45. Bhattacharyya, P., Pradhan, K., Paul, S., and Das, A.R., Tetrahedron Lett., 2012, vol. 53, no. 35, p. 4687. https://doi.org/10.1016/j.tetlet.2012.06.086

    Article  CAS  Google Scholar 

  46. Martin, N., Pascual, C., Seoane, C., and Soto, J.L., Heterocycles, 1987, vol. 26, no. 11, p. 2811. https://doi.org/10.3987/R-1987-11-2811

    Article  CAS  Google Scholar 

  47. Martin, N., Seoane, C., and Soto, J.L., Tetrahedron, 1988, vol. 44, no. 18, p. 5861. https://doi.org/10.1016/S0040-4020(01)81443-5

    Article  CAS  Google Scholar 

  48. El-Sakka, I.A., El-Kousy, S.M., and Kandil, Z.E., J. Prakt. Chem., 1991, vol. 333, no. 2, p. 345. https://doi.org/10.1002/prac.19913330222

    Article  CAS  Google Scholar 

  49. Elnagdi, M.H., Abdel-Motaleb, R.M., Mustafa, M., Zayed, M.F., and Kamel, E.M., J. Heterocycl. Chem., 1987, vol. 24, no. 6, p. 1677. https://doi.org/10.1002/jhet.5570240635

    Article  CAS  Google Scholar 

  50. Zhang, J.J., Hu, J.D., Cao, C.P., Dou, G.L., Fu, L., Huang, Z.B., and Shi, D.Q., RSC Adv., 2014, vol. 4, p. 62457. https://doi.org/10.1039/C4RA12560F

    Article  CAS  Google Scholar 

  51. Núñez-Vergara, L.J., Squella, J.A., NavarreteEncina, P.A., Vicente-García, E., Preciado, S., and Lavilla, R., Curr. Med. Chem., 2011, vol. 18, no. 31, p. 4761. https://doi.org/10.2174/092986711797535272

    Article  PubMed  Google Scholar 

  52. Bigdeli, M.A., Marjani, K., Farokhi, E., Sheikhhosseini, E., and Ghazanfari, D., J. Heterocycl. Chem., 2013, vol. 50, no. 3, p. 625. https://doi.org/10.1002/jhet.1612

    Article  CAS  Google Scholar 

  53. Boulebd, H., Ismaili, L., Bartolini, M., Bouraiou, A., Andrisano, V., Martin, H., Bonet, A., Moraleda, I., Iriepa, I., Chioua, M., Belfaitah, A., and Marco-Contelles, J., Molecules, 2016, vol. 21, no. 4, p. 400. https://doi.org/10.3390/molecules21040400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Romero, A. and Marco-Contelles, J., Curr. Top. Med. Chem., 2017, vol. 17, no. 31, p. 3328. https://doi.org/10.2174/1568026618666180112155639

    Article  CAS  PubMed  Google Scholar 

  55. Oset-Gasque, M.J., González, M.P., Pérez-Peña, J., García-Font, N., Romero, A., del Pino, J., Ramos, E., Hadjipavlou-Litina, D., Soriano, E., Chioua, M., Samadi, A., Raghuvanshi, D.S., Singh, K.N., and Marco-Contelles, J., Eur. J. Med. Chem., 2014, vol. 74, p. 491. https://doi.org/10.1016/j.ejmech.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  56. Oset-Gasque, M.J. and Marco-Contelles, J., Curr. Top. Med. Chem., 2017, vol. 17, no. 31, p. 3349. https://doi.org/10.2174/1568026618666180112155928

    Article  CAS  PubMed  Google Scholar 

  57. Mahdavi, M., Hariri, R., Mirfazli, S.S., Lotfian, H., Rastergari, A., Firuzi, O., Edraki, N., Larijani, B., Akbarzadeh, T., and Saeedi, M., Chem. Biodivers., 2019, vol. 16, no. 4, article no. e1800488. https://doi.org/10.1002/cbdv.201800488

  58. Dotsenko, V.V., Frolov, K.A., Krivokolysko, S.G., Chigorina, E.A., Pekhtereva, T.M., Suykov, S.Yu., Papayanina, E.S., Dmitrienko, A.O., and Bushmarinov, I.S., Chem. Heterocycl. Compd., 2016, vol. 52, no. 2, p. 116. https://doi.org/10.1007/s10593-016-1843-5

    Article  CAS  Google Scholar 

  59. Cespedes, C., Jakupovic, J., Silva, M., and Watson, W., Phytochemistry, 1990, vol. 29. N. 4, p. 1354. https://doi.org/10.1016/0031-9422(90)85469-V

    Article  CAS  Google Scholar 

  60. Williams, S.G., Bhadbhade, M., Bishop, R., and Ung, A.T., Tetrahedron, 2017, vol. 73, no. 2, p. 116. https://doi.org/10.1016/j.tet.2016.11.057

    Article  CAS  Google Scholar 

  61. Ung, A.T., Williams, S.G., Angeloski, A., Ashmore, J., Kuzhiumparambil, U., Bhadbhade, M., and Bishop, R., Monatsh. Chem., 2014, vol. 145, no. 6, p. 983. https://doi.org/10.1007/s00706-014-1185-x

    Article  CAS  Google Scholar 

  62. Mirand, C., Massiot, G., and Levy, J., J. Org. Chem., 1982, vol. 47, no. 21, p. 4169. https://doi.org/10.1021/jo00142a034

    Article  CAS  Google Scholar 

  63. Gubernator, K., Hofeditz, W., and Plieninger, H., Chem. Ber., 1980, vol. 113, no. 2, p. 669. https://doi.org/10.1002/cber.19801130224

    Article  CAS  Google Scholar 

  64. Martín, N., Quinteiro, M., Seoane, C., Albert, A., Cano, F.H., and Abramovitch, R.A., Tetrahedron, 1992, vol. 48, no. 9, p. 1581. https://doi.org/10.1016/S0040-4020(01)88716-0

    Article  Google Scholar 

  65. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Cryst., 2009, vol. 42, p. 339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  66. Sheldrick, G.M., Acta Crystallogr. (A), 2008, vol. 64, p. 112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  67. Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Kuban Science Foundation (project MFI-20.1-26/20, application no. MFI-20.1/45, V.V. Dotsenko), as well as the Ministry of Education and Science of the Russian Federation (topic 0795-2020-0031, N.A. Aksenov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ismiyev.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Translated from Zhurnal Obshchei Khimii, 2021, Vol. 91, No. 5, pp. pp. 665–675 https://doi.org/10.31857/S0044460X21050024.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismiyev, A.I., Dotsenko, V.V., Aksenov, N.A. et al. Pseudo-Five-Component Stereoselective Synthesis of Highly Functionalized 3-Azabicyclo[3.3.1]nona-2,7-dienes. Russ J Gen Chem 91, 758–767 (2021). https://doi.org/10.1134/S1070363221050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363221050029

Keywords:

Navigation