Skip to main content

Advertisement

Log in

Malononitrile dimer as a privileged reactant in design and skeletal diverse synthesis of heterocyclic motifs

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Malononitrile dimer as a precursor reactant has been extensively applied in the diversity-oriented synthesis of various heterocyclic motifs, bis-heterocyclic compounds, fused heterocycle derivatives, bicyclic bridged heterocyclic scaffolds, and highly substituted carbocyclic compounds. These remarkable products were synthesized via various types of reactions, such as cycloaddition, cyclocondensation, cascade/domino/tandem reactions along with multi-component reactions. In addition, the flexibility and high reactivity of malononitrile dimer as a multi-functional reagent and its potential to the preparation of novel beneficial scaffolds as well as biologically active molecules signify it as a suitable building block in total synthesis, medicinal chemistry, and dyes. In the present review, the advances in the chemistry of malononitrile dimer as a potent reagent in organic synthesis have been reported in the past to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34

Similar content being viewed by others

References

  1. Anthony CR (1955) 2-Amino-1,3,3-tricyano-2-propene and preparation of same. US Patent 2,719,861

  2. Carboni R, Coffman D, Howard E (1958) Cyanocarbon chemistry. XI. 1 Malononitrile dimer. J Am Chem Soc 80:2838–2840. https://doi.org/10.1021/ja01544a061

    Article  CAS  Google Scholar 

  3. Paul JW, Quach TT, Duchemin A-M, Schrier BK, DaVanzo JP (1990) 1,1,3 Tricyano-2-amino-1-propene (Triap): a small molecule which mimics or potentiates nerve growth factor. Dev Brain Res 55:21–27. https://doi.org/10.1016/0165-3806(90)90101-4

    Article  CAS  Google Scholar 

  4. Essman WB (1966) Effect of tricyanoaminopropene on the amnesic effect of electroconvulsive shock. Psychopharmacologia 9:426–433. https://doi.org/10.1007/bf00406452

    Article  CAS  PubMed  Google Scholar 

  5. Banfi S, Cornelli U, Fonio W, Doricotti L (1982) A screening method for substances potentially active on learning and memory. J Pharmacol Methods 8:255–263. https://doi.org/10.1016/0160-5402(82)90042-0

    Article  CAS  PubMed  Google Scholar 

  6. Davis MC, Groshens TJ, Parrish DA (2010) Preparation of cyan dyes from 6-diethylaminobenzo[\(b\)]furan-2-carboxaldehyde. Synth Commun 40:3008–3020. https://doi.org/10.1080/00397910903351568

    Article  CAS  Google Scholar 

  7. Vanmaele LJ (1992) New dyes derived from malononitrile dimer. Tetrahedron Lett 33:961–964. https://doi.org/10.1016/S0040-4039(00)91588-0

    Article  CAS  Google Scholar 

  8. Zerner M, Reidlinger C, Fabian W, Junek H (2001) Push-pull dyes containing malononitrile dimer as acceptor: synthesis, spectroscopy and quantum chemical calculations. J Mol Struct THEOCHEM 543:129–146. https://doi.org/10.1016/S0166-1280(00)00851-4

    Article  CAS  Google Scholar 

  9. Ritchie K, Harris J (1969) 1,1,3-Tricyano-2-amino-1-propene: specific reagent for fluorometric determination of copper in micro amounts. Anal Chem 41:163–166. https://doi.org/10.1021/ac60270a046

    Article  CAS  Google Scholar 

  10. Andreu R, Carrasquer L, Franco S, Garín J, Orduna J, Martinez de Baroja N, Alicante R, Villacampa B, Allain M (2009) 4H-pyran-4-ylidenes: strong proaromatic donors for organic nonlinear optical chromophores. J Org Chem 74:6647–6657. https://doi.org/10.1021/jo901142f

    Article  CAS  PubMed  Google Scholar 

  11. Yoon C, J-h Choi (2014) Synthesis of tricyanopyrrolidone derivatives as synergists for improving contrast ratio of liquid crystal displays. Dyes Pigments 101:344–350. https://doi.org/10.1016/j.dyepig.2013.10.017

    Article  CAS  Google Scholar 

  12. Mascal M, Farmer SC, Arnall-Culliford JR (2006) Synthesis of the G–C DNA base hybrid with a functional tail. J Org Chem 71:8146–8150. https://doi.org/10.1021/jo061304s

    Article  CAS  PubMed  Google Scholar 

  13. Jiang B, Rajale T, Wever W, Tu SJ, Li G (2010) Multicomponent reactions for the synthesis of heterocycles. Chem Asian J 5:2318–2335. https://doi.org/10.1002/asia.201000310

    Article  CAS  PubMed  Google Scholar 

  14. Hollis A, Ahmed Z (2013) Preserving antibiotics, rationally. N Engl J Med 369:2474–2476. https://doi.org/10.1056/NEJMp1311479

    Article  CAS  PubMed  Google Scholar 

  15. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45:740–743. https://doi.org/10.1021/jm010330

    Article  CAS  PubMed  Google Scholar 

  16. Selvam TP, James CR, Dniandev PV, Valzita SK (2015) A mini review of pyrimidine and fused pyrimidine marketed drugs. Res Pharm 2(4):1–9

    Google Scholar 

  17. Cabrele C, Reiser O (2016) The modern face of synthetic heterocyclic chemistry. J Org Chem 81:10109–10125. https://doi.org/10.1021/acs.joc.6b02034

    Article  CAS  PubMed  Google Scholar 

  18. Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. https://doi.org/10.1021/cr800296p

    Article  CAS  PubMed  Google Scholar 

  19. Dömling A, Kan Wang D, Wang W (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3135. https://doi.org/10.1021/cr100233r

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Shaabani A, Hooshmand SE (2016) Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6:58142–58159. https://doi.org/10.1039/C6RA11701E

    Article  CAS  Google Scholar 

  21. Shaabani A, Maleki A, Rezayan AH, Sarvary A (2011) Recent progress of isocyanide-based multicomponent reactions in Iran. Mol Divers 15:41–68. https://doi.org/10.1007/s11030-010-9258-1

    Article  CAS  PubMed  Google Scholar 

  22. Jagodziński TS (2003) Thioamides as useful synthons in the synthesis of heterocycles. Chem Rev 103:197–228. https://doi.org/10.1021/cr0200015

    Article  PubMed  CAS  Google Scholar 

  23. Godoi B, Schumacher RF, Zeni G (2011) Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem Rev 111:2937–2980. https://doi.org/10.1021/cr100214d

    Article  CAS  PubMed  Google Scholar 

  24. Eftekhari-Sis B, Zirak M (2014) Chemistry of \(\alpha \)-oxoesters: a powerful tool for the synthesis of heterocycles. Chem Rev 115:151–264. https://doi.org/10.1021/cr5004216

    Article  PubMed  CAS  Google Scholar 

  25. Heravi MM, Daraie M, Zadsirjan V (2015) Current advances in the synthesis and biological potencies of tri- and tetra-substituted 1H-imidazoles. Mol Divers 19:577–623. https://doi.org/10.1007/s11030-015-9590-6

    Article  CAS  PubMed  Google Scholar 

  26. Kumari S, Kishore D, Paliwal S, Chauhan R, Dwivedi J, Mishra A (2016) Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol Divers 20:185–232. https://doi.org/10.1007/s11030-015-9596-0

    Article  CAS  PubMed  Google Scholar 

  27. Abdou MM, El-Saeed RA, Elattar KM, Seferoğlu Z, Boukouvalas J (2016) Advancements in tetronic acid chemistry. Part 2: use as a simple precursor to privileged heterocyclic motifs. Mol Divers 20:989–999. https://doi.org/10.1007/s11030-016-9683-x

    Article  CAS  PubMed  Google Scholar 

  28. Halimehjani AZ, Namboothiri IN, Hooshmand SE (2014) Part I: nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv 4:48022–48084. https://doi.org/10.1039/C4RA08828J

    Article  CAS  Google Scholar 

  29. Halimehjani AZ, Namboothiri IN, Hooshmand SE (2014) Part II: nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv 4:51794–51829. https://doi.org/10.1039/C4RA08830A

    Article  CAS  Google Scholar 

  30. Allais C, Grassot J-M, Rodriguez J, Constantieux T (2014) Metal-free multicomponent syntheses of pyridines. Chem Rev 114:10829–10868. https://doi.org/10.1021/cr500099b

    Article  CAS  PubMed  Google Scholar 

  31. Kim BY, Ahn JB, Lee HW, Kang SK, Lee JH, Shin JS, Ahn SK, Hong CI, Yoon SS (2004) Synthesis and biological activity of novel substituted pyridines and purines containing 2, 4-thiazolidinedione. Eur J Med Chem 39:433–447. https://doi.org/10.1016/j.ejmech.2004.03.001

    Article  CAS  PubMed  Google Scholar 

  32. Pillai AD, Rathod PD, Franklin P, Patel M, Nivsarkar M, Vasu KK, Padh H, Sudarsanam V (2003) Novel drug designing approach for dual inhibitors as anti-inflammatory agents: implication of pyridine template. Biochem Biophys Res Commun 301:183–186. https://doi.org/10.1016/S0006-291X(02)02996-0

    Article  CAS  PubMed  Google Scholar 

  33. Klimešová V, Svoboda M, Waisser K, Pour M, Kaustová J (1999) New pyridine derivatives as potential antimicrobial agents. Il Farmaco 54:666–672. https://doi.org/10.1016/S0014-827X(99)00078-6

    Article  PubMed  Google Scholar 

  34. Sadek KU, Elnagdi MH (1988) A new route for the synthesis of pyrido[2, 3-\(d\)]pyridazines. Synthesis 1988:483–484. https://doi.org/10.1055/s-1988-27617

    Article  Google Scholar 

  35. Yavari I, Taheri Z, Nematpour M, Sheikhi A (2014) Copper-catalyzed tandem synthesis of pentasubstituted pyridines from sulfonoketenimides and 2-aminoprop-1-ene-1,1,3-tricarbonitrile. Synlett 25:2036–2038. https://doi.org/10.1055/s-0034-1378378

    Article  CAS  Google Scholar 

  36. Fadda AA, Rabie R, Etman HA, Fouda A-AS (2015) 1-Naphthyl-2-cyanoacetamide in heterocyclic synthesis: synthesis and evaluation of the antimicrobial activity of some new pyridine, pyrimidine, and naphtho[2, 1-\(b\)]oxazine derivatives. Res Chem Intermed 41:7883–7897. https://doi.org/10.1007/s11164-014-1864-6

    Article  CAS  Google Scholar 

  37. Sepehri S, Sanchez HP, Fassihi A (2015) Hantzsch-type dihydropyridines and biginelli-type tetra-hydropyrimidines: a review of their chemotherapeutic activities. J Pharm Pharm Sci 18:1–52. https://doi.org/10.18433/J3Q01V

    Article  PubMed  Google Scholar 

  38. Hantzsch A (1882) Hantzsch dihydropyridine synthesis. Just Leib Ann Chem 215:1–82

    Article  Google Scholar 

  39. Aly AA, El Malah T, Ishak EA, Bräse S (2016) Reaction of dithiocarbamates with malononitrile dimer; simple synthesis of new 1, 4-dihydropyridine-2-thiols. J Sulfur Chem 37:141–147. https://doi.org/10.1080/17415993.2015.1102911

    Article  CAS  Google Scholar 

  40. Bardasov IN, Alekseeva AU, Mihailov DL, Ershov OV, Nasakin OE, Tafeenko VA (2014) One-pot synthesis of 2-(dicyanomethylene)-1, 2-dihydropyridine derivatives. Tetrahedron Lett 55:2730–2733. https://doi.org/10.1016/j.tetlet.2014.03.056

    Article  CAS  Google Scholar 

  41. Bardasov I, Mikhailov D, Belikov MY, Alekseeva AY, Ershov O (2016) Synthesis of polyfunctional 2-thionicotinonitriles. Russ J Org Chem 52:1600–1602. https://doi.org/10.1134/S1070428016110087

    Article  CAS  Google Scholar 

  42. Helmy NM, El-Baih FE, Al-Alshaikh MA, Moustafa MS (2011) A route to dicyanomethylene pyridines and substituted benzonitriles utilizing malononitrile dimer as a precursor. Molecules 16:298–306. https://doi.org/10.3390/molecules16010298

    Article  CAS  PubMed  Google Scholar 

  43. Al-Matar HM, Khalil KD, Meier H, Kolshorn H, Elnagdi MH (2008) Chitosan as heterogeneous catalyst in Michael additions: the reaction of cinnamonitriles with active methylene moieties and phenols. Arkivoc 16:288–301

    Google Scholar 

  44. Gore RP, Rajput AP (2013) A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent Today 5:148–152. https://doi.org/10.1016/j.dit.2013.05.010

    Article  CAS  Google Scholar 

  45. Xia S, Yin S, Tao S, Shi Y, Rong L, Wei X, Zong Z (2012) An efficient and facile synthesis of novel substituted pyrimidine derivatives: 4-amino-5-carbonitrile-2-nitroaminopyrimidine. Res Chem Intermed 38:2435–2442. https://doi.org/10.1007/s11164-012-0559-0

    Article  CAS  Google Scholar 

  46. El-Subbagh HI, Abu-Zaid SM, Mahran MA, Badria FA, Al-Obaid AM (2000) Synthesis and biological evaluation of certain \(\alpha \), \(\beta \)-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem 43:2915–2921. https://doi.org/10.1021/jm000038m

    Article  CAS  PubMed  Google Scholar 

  47. Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type—a literature survey. Eur J Med Chem 35:1043–1052. https://doi.org/10.1016/S0223-5234(00)01189-2

    Article  CAS  PubMed  Google Scholar 

  48. Kamali M, Shockravi A, Doost MS, Hooshmand SE (2015) One-pot, solvent-free synthesis via Biginelli reaction: catalyst-free and new recyclable catalysts. Cogent Chem 1:1081667. https://doi.org/10.1080/23312009.2015.1081667

    Article  CAS  Google Scholar 

  49. Elkanzi NAA, Aly AA, Shawky AM, El-Sheref EM, Morsy NM, El-Reedy AAM (2016) Amination of malononitrile dimer to amidines: synthesis of 6-aminopyrimidines. J Heterocycl Chem 53:1941–1944. https://doi.org/10.1002/jhet.2510

    Article  CAS  Google Scholar 

  50. Abdel-Latif E, Mustafa H, Etman H, Fadda A (2007) Synthesis of new purine, pteridine, and other pyrimidine derivatives. Russ J Org Chem 43:443–448. https://doi.org/10.1134/S1070428007030219

    Article  CAS  Google Scholar 

  51. D Joshi S, A More U, H Kulkarni V, M Aminabhavi T (2013) Pyrrole: chemical synthesis, microwave assisted synthesis, reactions and applications: a review. Curr Org Chem 17:2279–2304. https://doi.org/10.2174/13852728113179990040

    Article  CAS  Google Scholar 

  52. Gholap SS (2016) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31. https://doi.org/10.1016/j.ejmech.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  53. Matano Y, Imahori H (2009) Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry. Acc Chem Res 42:1193–1204. https://doi.org/10.1021/ar900075e

    Article  CAS  PubMed  Google Scholar 

  54. Lederer L, Paal C (1885) Synthese von pyrrolderivaten. Ber Dtsch Chem Ges 18:2591–2599

    Article  Google Scholar 

  55. Knorr L (1885) Einwirkung des Diacetbernsteinsäureesters auf Ammoniak und primäre Aminbasen. Eur J Inorg Chem 18:299–311. https://doi.org/10.1002/cber.18850180154

    Google Scholar 

  56. Yurovskaya M, Alekseyev R (2014) New perspectives on classical heterocyclic reactions involving pyrrole derivatives (review). Chem Heterocycl Compd 49:1400–1425. https://doi.org/10.1007/s10593-014-1393-7

    Article  CAS  Google Scholar 

  57. Fedoseev S, Belikov MY, Ershov O, Bardasov I, Tafeenko V (2016) New push-pull chromophores. Synthesis of 2-[4-Aryl-3-cyano-5-hydroxy-5-methyl-1H-pyrrol-2 (5H)-ylidene] malononitriles. Russ J Org Chem 52:1440–1443. https://doi.org/10.1134/S1070428016100122

    Article  CAS  Google Scholar 

  58. Dyachenko VD, Toropov AN, Rusanov EB (2015) Revision of 2-(3, 8-diaryl-6-oxo-2,7-diazaspiro[4.4]nona-2,8-dien-1-ylidene) malononitrile structure. Molecular and crystal structure of 3-cyano-2-[2-(4-methoxyphenyl)-2-oxoethyl]-2-[5-(4-methoxyphenyl)-1H-pyrrol-2-yl]malononitrile. Chem Heterocycl Compd 51:31–33. https://doi.org/10.1007/s10593-015-1655-z

    Article  CAS  Google Scholar 

  59. Mouton JW, Vinks AA (2007) Continuous infusion of beta-lactams. Curr Opin Crit Care 13:598–606. https://doi.org/10.1097/MCC.0b013e3282e2a98f

    Article  PubMed  Google Scholar 

  60. Tahlan K, Jensen SE (2013) Origins of the [beta]-lactam rings in natural products. J Antibiot 66:401–410. https://doi.org/10.1038/ja.2013.24

    Article  CAS  PubMed  Google Scholar 

  61. Moustafa MS, Al-Mousawi SM, Hilmy NM, Ibrahim YA, Liermann JC, Meier H, Elnagdi MH (2012) Unexpected behavior of enaminones: interesting new routes to 1,6-naphthyridines, 2-oxopyrrolidines and pyrano[4,3,2- de][1, 6]naphthyridines. Molecules 18:276–286. https://doi.org/10.3390/molecules18010276

    Article  PubMed  CAS  Google Scholar 

  62. Dotsenko VV, Ismiev AI, Khrustaleva AN, Frolov KA, Krivokolysko SG, Chigorina EA, Snizhko AP, Gromenko VM, Bushmarinov IS, Askerov RK (2016) Synthesis, structure, and reactions of (4-aryl-3-cyano-6-oxopiperidin-2-ylidene)malononitriles. Chem Heterocycl Compd 52:473–483. https://doi.org/10.1007/s10593-016-1918-3

    Article  CAS  Google Scholar 

  63. Elkanzi N, Morsy NM, Aly AA, El Malah T, Shawky AM (2016) Green chemistry: microwave-assisted facile synthesis of 6-imino-1, 3, 4-thiadiazenes from reaction of thiocarbohydrazones with malononitrile dimer. J Sulfur Chem 37:114–121. https://doi.org/10.1080/17415993.2015.1103243

    Article  CAS  Google Scholar 

  64. Gronowitz S (2009) The chemistry of heterocyclic compounds, thiophene and its derivatives, vol 44. Wiley, New York

    Google Scholar 

  65. Roncali J (1992) Conjugated poly (thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738. https://doi.org/10.1021/cr00012a009

    Article  CAS  Google Scholar 

  66. Hossaini Z, Rostami-Charati F, Soltani S, Mirzaei A, Berijani K (2011) Multicomponent reactions of ammonium thiocyanate, acyl chlorides, alkyl bromides, and enaminones: a facile one-pot synthesis of thiophenes. Mol Divers 15:911–916. https://doi.org/10.1007/s11030-011-9322-5

    Article  CAS  PubMed  Google Scholar 

  67. Tréguier B, Lawson M, Bernadat G, Bignon J, Dubois J, Brion J-D, Alami M, Hamze A (2014) Synthesis of a 3-(\(\alpha \)-Styryl)benzo[b]-thiophene library via bromocyclization of alkynes and palladium-catalyzed tosylhydrazones cross-couplings: evaluation as antitubulin agents. ACS Comb Sci 16:702–710. https://doi.org/10.1021/co500115b

    Article  PubMed  CAS  Google Scholar 

  68. Huang Y, Dömling A (2011) The Gewald multicomponent reaction. Mol Divers 15:3–33. https://doi.org/10.1007/s11030-010-9229-6

    Article  CAS  PubMed  Google Scholar 

  69. Shaabani A, Hooshmand SE, Afaridoun H (2017) A green chemical approach: a straightforward one-pot synthesis of 2-aminothiophene derivatives via Gewald reaction in deep eutectic solvents. Monatsh Chem 148:711–716. https://doi.org/10.1007/s00706-016-1787-6

    Article  CAS  Google Scholar 

  70. Eldin AMS (2003) 2-Amino-1,1,3-tricyanopropene in heterocyclic synthesis: novel synthesis of thiopyran pyridinethiones and nicotinonitrile derivatives. Phosphorus Sulfur Silicon Relat Elem 178:2215–2223. https://doi.org/10.1080/713744561

    Article  CAS  Google Scholar 

  71. Padwa A, Murphree SS (2006) Epoxides and aziridines—a mini review. Arkivoc 3:6–33

    Google Scholar 

  72. Golubev R, Belikov MY, Bardasov I, Ershov O, Nasakin O (2010) Synthesis of epoxidated benzylidene derivatives of malononitrile dimer. Russ J Org Chem 46:1883–1884. https://doi.org/10.1134/S1070428010120171

    Article  CAS  Google Scholar 

  73. Bardasov IN, Golubev RV, Ershov OV, Kayukov YS, Nasakin OE (2011) One-pot transformation of cyano oxiranes into furo[3,2-c]isothiazole derivatives. Tetrahedron Lett 52:4724–4725. https://doi.org/10.1016/j.tetlet.2011.06.083

    Article  CAS  Google Scholar 

  74. Bardasov IN, Mikhailov DL, Alekseeva AU, Ershov OV, Tafeenko VA (2016) A new heterocycle: furo[3,2-c]isoselenazole. Tetrahedron Lett 57:2772–2773. https://doi.org/10.1016/j.tetlet.2016.05.032

    Article  CAS  Google Scholar 

  75. Shaabani A, Hajishaabanha F, Mofakham H, Maleki A (2010) A new one-pot three-component synthesis of 2,4-diamino-5H-chromeno[2,3-\(b\)]pyridine-3-carbonitrile derivatives. Mol Divers 14:179–182. https://doi.org/10.1007/s11030-009-9152-x

    Article  CAS  PubMed  Google Scholar 

  76. Vereshchagin AN, Elinson MN, Anisina YE, Ryzhkov FV, Goloveshkin AS, Bushmarinov IS, Zlotin SG, Egorov MP (2015) Pot, atom and step economic (PASE) synthesis of 5-isoxazolyl-5H-chromeno[2,3-\(b\)]pyridine scaffold. Mendeleev Commun 25:424–426. https://doi.org/10.1016/j.mencom.2015.11.008

    Article  CAS  Google Scholar 

  77. Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA, Masih L (2005) Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 15:1587–1590. https://doi.org/10.1016/j.bmcl.2005.01.067

    Article  CAS  PubMed  Google Scholar 

  78. Bardasov IN, Alekseeva AU, Mihailov DL, Ershov OV, Grishanov DA (2015) Double heteroannulation reactions of 1-naphthol with alkyl-and arylmethylidene derivatives of malononitrile dimer. Tetrahedron Lett 56:1830–1832. https://doi.org/10.1016/j.tetlet.2015.02.081

    Article  CAS  Google Scholar 

  79. Bardasov I, Alekseeva AY, Malyshkina N, Ershov O, Grishanov D (2016) One-step synthesis of chromeno[2,3-\(b\)]pyridines. Russ J Org Chem 52:830–833. https://doi.org/10.1134/S1070428016060117

    Article  CAS  Google Scholar 

  80. Zhang W, Wang J, Mao J, Hu L, Wu X, Guo C (2016) Three-component domino cyclization of novel carbazole and indole fused pyrano[2,3-\(c\)]pyridine derivatives. Tetrahedron Lett 57:1985–1989. https://doi.org/10.1016/j.tetlet.2016.03.081

    Article  CAS  Google Scholar 

  81. Kamel M (2015) Convenient synthesis, characterization, cytotoxicity and toxicity of pyrazole derivatives. Acta Chim Slov 62:136–152

    Article  CAS  PubMed  Google Scholar 

  82. Tu X-J, Fan W, Hao W-J, Jiang B, Tu S-J (2014) Three-component bicyclization providing an expedient access to pyrano[\(2^\prime,3^\prime \): 5,6]pyrano[2,3-\(b\)]pyridines and its derivatives. ACS Comb Sci 16:647–651. https://doi.org/10.1021/co500100c

    Article  CAS  PubMed  Google Scholar 

  83. Abdelmoniem AM, Ghozlan SAS, Abdelmoniem DM, Elwahy AHM, Abdelhamid IA (2017) Facile one-pot, three-component synthesis of novel bis-heterocycles incorporating 5H-chromeno[2,3-\(b\)]pyridine-3-carbonitrile derivatives. J Heterocycl Chem. https://doi.org/10.1002/jhet.2890

  84. Ibrahim MA, El-Gohary NM (2016) Studies on the chemical transformations of 6-methylchromone-3-carbonitrile under nucleophilic conditions. J Heterocycl Chem 53:859–864. https://doi.org/10.1002/jhet.2355

    Article  CAS  Google Scholar 

  85. Ibrahim MA, Farag A, El-Gohary NM (2015) Synthesis, structural, spectral, optical characterizations of (3-cyano-9-methyl-5-oxo-1,5-dihydro-2H-chromeno[4,3-\(b\)]pyridin-2-ylidene)propanedinitrile (CMOCPP) and its photodiode application. Synth Met 203:91–97. https://doi.org/10.1016/j.synthmet.2015.02.023

    Article  CAS  Google Scholar 

  86. Madaan A, Verma R, Kumar V, Singh AT, Jain SK, Jaggi M (2015) 1, 8-Naphthyridine derivatives: a review of multiple biological activities. Arch Pharm 348:837–860. https://doi.org/10.1002/ardp.201500237

    Article  CAS  Google Scholar 

  87. Litvinov V (2006) Advances in the chemistry of naphthyridines. Adv Heterocycl Chem 91:189–300. https://doi.org/10.1016/S0065-2725(06)91004-6

    Article  CAS  Google Scholar 

  88. Li J, Yu Y, Tu M-S, Jiang B, Wang S-L, Tu S-J (2012) New domino heteroannulation of enaminones: synthesis of diverse fused naphthyridines. Org Biomol Chem 10:5361–5365. https://doi.org/10.1039/C2OB25349F

    Article  CAS  PubMed  Google Scholar 

  89. Shaabani A, Hooshmand SE, Tabatabaei AT (2016) Synthesis of fully substituted naphthyridines: a novel domino four-component reaction in a deep eutectic solvent system based on choline chloride/urea. Tetrahedron Lett 57:351–353. https://doi.org/10.1016/j.tetlet.2015.12.017

    Article  CAS  Google Scholar 

  90. Sun F, Zhu F, Shao X, Li Z (2015) One-pot, three-component synthesis of 1,8-naphthyridine derivatives from heterocyclic ketene aminals, malononitrile dimer, and aryl aldehydes. Synlett 26:2306–2312. https://doi.org/10.1055/s-0034-1378823

    Article  CAS  Google Scholar 

  91. Al-duaij OK, Zaki ME, El Gazzar A-R (2016) A simple precursor for highly functionalized fused imidazo[4,5-\(b\)]pyridines and imidazo[4,5-\(b\)]-1,8-naphthyridine. Molecules 21:1646. https://doi.org/10.3390/molecules21121646

    Article  CAS  Google Scholar 

  92. Elkholy YM (2007) An efficient synthesis of pyrazolo[3,4-\(b\)]quinolin-3-amine and benzo[\(b\)][1,8]naphthyridine derivatives. Molecules 12:361–372. https://doi.org/10.3390/12030361

    Article  CAS  PubMed  Google Scholar 

  93. Bardasov IN, Alekseeva AU, Ershov OV, Belikov MY (2015) Four component DHARMA-synthesis of some densely functionalized 1,8-naphthyridines. Tetrahedron Lett 56:5434–5436. https://doi.org/10.1016/j.tetlet.2015.08.013

    Article  CAS  Google Scholar 

  94. Sharma V, Kumar V (2014) Indolizine: a biologically active moiety. Med Chem Res 23:3593–3606. https://doi.org/10.1007/s00044-014-0940-1

    Article  CAS  Google Scholar 

  95. Tverdokhleb NM, Khoroshilov GE, Dotsenko VV (2014) Cascade synthesis of pyrido[3,2-\(a\)]indolizines by reaction of Kröhnke–Mukaiyama salts with malononitrile dimer. Tetrahedron Lett 55:6593–6595. https://doi.org/10.1016/j.tetlet.2014.10.046

    Article  CAS  Google Scholar 

  96. Jones G (2002) The chemistry of the triazolopyridines: an update. Adv Heterocycl Chem 83:2–71

    Google Scholar 

  97. Pokhodylo NT, Shyyka OY (2017) A new cascade reaction of azides with malononitrile dimer to polyfunctional [1,2,3]triazolo[4,5-b]pyridine. Synth Commun. https://doi.org/10.1080/00397911.2017.1313427

  98. Cao J, Huang X (2009) Solid-phase synthesis of bis-heterocyclic compounds with skeletal diversity from resin-bound 3-propargylamino-2-seleno-ester. J Comb Chem 12:1–4. https://doi.org/10.1021/cc900112s

    Article  CAS  Google Scholar 

  99. Dolle RE, Le Bourdonnec B, Goodman AJ, Morales GA, Thomas CJ, Zhang W (2008) Comprehensive survey of chemical libraries for drug discovery and chemical biology: 2007. J Comb Chem 10:753–802. https://doi.org/10.1021/cc800119z

    Article  CAS  PubMed  Google Scholar 

  100. El-Azab IH (2013) Synthesis of some new benzo[\(b\)][1, 4]diazepine based heterocycles. J Heterocycl Chem. https://doi.org/10.1002/jhet.1123

  101. Khodairy A, Ahmed EA, Abdel Ghany H (2017) Hetaryl-1,5 benzodiazepines-part I: synthesis of 3-pyrimidinyl- and Imidazolyl-1,5-benzodiazepines. J Heterocycl Chem 54:242–247. https://doi.org/10.1002/jhet.2573

    Article  CAS  Google Scholar 

  102. Couty F, Evano G (2008) Bicyclic 5–6 systems with one bridgehead (ring junction) nitrogen atom: one extra heteroatom 1: 0. Compr Heterocycl Chem III:409–500

    Google Scholar 

  103. Maison W, Prenzel AH (2005) Stereoselective synthesis of aza-and diazabicyclo[X.Y.0]alkane dipeptide mimetics. Synthesis 2005:1031–1048. https://doi.org/10.1055/s-2005-865295

    Article  CAS  Google Scholar 

  104. Alizadeh A, Sadeghi V, Bayat F, Zhu L-G (2014) Highly efficient diastereoselective synthesis of Azabicyclo[2.2. 2]octanes. Synlett 25:2609–2612. https://doi.org/10.1055/s-0034-1379204

    Article  CAS  Google Scholar 

  105. Bardasov I, Mikhailov D, Alekseeva AY, Ershov O, Kayukov YS, Nasakin O (2015) MIRC reactions of 4-aryl-2-aminobuta-1,3-diene-1,1,3-tricarbonitriles. Synthesis of 2-amino-6-aryl-5-cyano-4-(dicyanomethylidene)-3-azabi-cyclo[3.1.0]hex-2-ene-1-carboxylic acid esters and amides. Russ J Org Chem 51:849–852. https://doi.org/10.1134/S1070428015060056

    Article  CAS  Google Scholar 

  106. Astruc D (2002) Modern arene chemistry. Wiley-VCH, New York

    Book  Google Scholar 

  107. Saito S, Yamamoto Y (2000) Recent advances in the transition-metal-catalyzed regioselective approaches to polysubstituted benzene derivatives. Chem Rev 100:2901–2916. https://doi.org/10.1021/cr990281x

    Article  CAS  PubMed  Google Scholar 

  108. Halimehjani AZ, Namboothiri IN, Hooshmand SE (2014) Nitroalkenes in the synthesis of carbocyclic compounds. RSC Adv 4:31261–31299. https://doi.org/10.1039/C4RA04069D

    Article  CAS  Google Scholar 

  109. Sadek KU, Shaker RM, Elrady MA, Elnagdi MH (2010) A novel method for the synthesis of polysubstituted diaminobenzonitrile derivatives using controlled microwave heating. Tetrahedron Lett 51:6319–6321. https://doi.org/10.1016/j.tetlet.2010.09.114

    Article  CAS  Google Scholar 

  110. Duda B, Tverdomed SN, Ionin BI, Röschenthaler GV (2014) Fluorinated alkynylphosphonates in C, C-cyclizations: regioselective formation of polysubstituted fluorinated arylphosphonates. Eur J Org Chem 2014:3757–3761. https://doi.org/10.1002/ejoc.201402188

    Article  CAS  Google Scholar 

  111. Mohareb RM, El-Sayed NN, Abdelaziz MA (2013) The Knoevenagel reactions of pregnenolone with cyanomethylene reagents: synthesis of thiophene, thieno[2,3-\(b\)]pyridine, thien [3,2-\(d\)]isoxazole derivatives of pregnenolone and their in vitro cytotoxicity towards tumor and normal cell lines. Steroids 78:1209–1219. https://doi.org/10.1016/j.steroids.2013.08.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support of the Iran National Elites Foundation (INEF) and the Research Council of Shahid Beheshti University and Catalyst Center of Excellence (CCE) at Shahid Beheshti University. We also thank Professor Guillermo A. Morales (Editor-in-Chief of Molecular Diversity) for his interesting comments, and Ph.D. students Reza Mohammadian and Mohammad Taghi Nazeri for redrawing some schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, A., Hooshmand, S.E. Malononitrile dimer as a privileged reactant in design and skeletal diverse synthesis of heterocyclic motifs. Mol Divers 22, 207–224 (2018). https://doi.org/10.1007/s11030-017-9807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9807-y

Keywords

Navigation