Skip to main content
Log in

Preparation of Nanosized α-Fe2O3 Using Mechanical Activation

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The processes occurring during the mechanical activation of a-Fe2O3 (hematite) in the presence of oleic acid in a centrifugal-planetary mill have been investigated. Mechanical activation for 10 h afforded hematite powder with particles size of 10–40 nm, as shown by means of X-ray diffraction analysis, FTIR spectroscopy, high-resolution transmission electron microscopy, and specific surface area measurements. Longer milling has led to mechanochemical transformation of hematite into Fe3O4 (magnetite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuai, W., Gu, C., Fang, G., Zhou, D., and Gao, J., J. Env. Sci., 2019, vol. 80, p. 5. https://doi.org/10.1016/j.jes.2018.06.015.

    Article  Google Scholar 

  2. Hua, C., Shang, Y., Wang, Y., Xu, J., Zhang, Y., Li, X., and Cao, A., Appl. Surf. Sci., 2017, vol. 405, p. 405. https://doi.org/10.1016/j.apsusc.2017.01.301.

    Article  CAS  Google Scholar 

  3. Zhou, Z., Liu, J., Long, R., Li, L., and Guo, L., J. Am. Chem. Soc., 2017, vol. 139, p. 6707. https://doi.org/10.1021/jacs.7b02121.

    Article  CAS  Google Scholar 

  4. Tadic, M., Trpkov, D., Kopanja, L., Vojnovic, S., and Panjan, M., J. Alloys Compd., 2019, vol. 792, p. 599. https://doi.org/10.1016/j.jallcom.2019.03.414.

    Article  CAS  Google Scholar 

  5. Cho, J.S., Hong, Y.J., Lee, J.H., and Kang, Y.C., Na-noscalem 2015, vol. 7, p. 8361. https://doi.org/10.1039/C5NR01391G.

    CAS  Google Scholar 

  6. Lemine, O.M., J. Mater. Sci. Eng., 2010, vol. 4,no. 2, p. 76. http://www.davidpublisher.org/index.php/Home/Article/index?id=17584.html.

    Google Scholar 

  7. Liu, H., Guo, H., Li, P., and Wei, Y., J. Solid State Chem., 2008, vol. 181, p. 2666. https://doi.org/10.1016/j.jssc.2008.06.052.

    Article  CAS  Google Scholar 

  8. Min, C., Huang, Y., and Liu, L., Mater. Lett., 2007, vol. 61, p. 4756. https://doi.org/10.1016/j.matlet.2007.07.027.

    Article  CAS  Google Scholar 

  9. Jing, Z.H. and Wu, S.H., Mater. Chem. Phys., 2005, vol. 92, p. 600. https://doi.org/10.1016/j.matchemphys.2005.02.005.

    Article  CAS  Google Scholar 

  10. Teja, A.S. and Koh, P.Y., Prog. Cryst. Growth Charact., 2009, vol. 55, p. 22. https://doi.org/10.1016/j.pcrysgrow.2008.08.003.

    Article  CAS  Google Scholar 

  11. Xiong, Q.Q., Ji, Z.G., and Qin, H.Y., Mater. Lett., 2016, vol. 168, p. 107. https://doi.org/10.1016/j.matlet.2016.01.047.

    Article  CAS  Google Scholar 

  12. Han, L.H., Liu, H., and Wei, Y., Powder Technol., vol. 207, p. 42. https://doi.org/10.1016/j.powtec.2010.10.008.

    Article  CAS  Google Scholar 

  13. Il’in, A.A., Russ. J. Chem. Chem. Technol., 2019, vol. 62,no. 5, p. 62. https://doi.org/10.6060/ivkkt.20196205.6009.

    Google Scholar 

  14. Randrianantoandro, N., Mercier, A.M., Hervieu, M., and Greneche, J.M., Mater. Lett., 2001, vol. 47, p. 150. https://doi.org/10.1016/S0167-577X(00)00227-5.

    Article  CAS  Google Scholar 

  15. Uehara, Y., Bull. Chem. Soc. Japan., 2075, vol. 48, p. 3383. https://doi.org/10.1246/bcsj.48.3383.

    Article  Google Scholar 

  16. Sanchez, L.C., Arboleda, J.D., Saragovi, C., Zysler, R.D., and Barrero C.A., Physica (B), 2007, vol. 389, p. 145. https://doi.org/10.1016/j.physb.2006.07.042.

    Article  CAS  Google Scholar 

  17. Zdujic, M., Jovalekic, C., Karanovic, L., and Mitric, M., Mater. Sci. Eng. (A), 1999, vol. 262, p. 204. https://doi.org/10.1016/S0921-5093(98)01009-0.

    Article  Google Scholar 

  18. Arbain, R., Othman, M., and Palaniandy, S., Miner. Eng., 2011, vol. 24, p. 1. https://doi.org/10.1016/j.mineng.2010.08.025.

    Article  CAS  Google Scholar 

  19. Pourghahramani, P., and Forssberg, E., Int. J. Miner. Process, 2006, vol. 79, p. 120. https://doi.org/10.1016/j.minpro.2006.01.010.

    Article  CAS  Google Scholar 

  20. Pourghahramani, P., Altin, E., Mallembakam, M.R., Peukert, W., and Forssberg, E., Powder Technol., 2008, vol. 186, p. 9. https://doi.org/10.1016/j.powtec.2007.10.027.

    Article  CAS  Google Scholar 

  21. Stewart, S.J., Borzi R.A, Cabanillas, E.D., Punte, G., and Mercader, R.C., J. Magn. Magn. Mater., 2003, vol. 260, p. 447. https://doi.org/10.1016/S0304-8853(02)01388-4.

    Article  CAS  Google Scholar 

  22. Bid, S., Banerjee, A., Kumar, S., Pradhan, S.K., Udayan De, and Banerjee, D., J. Alloys Compd., 2001, vol. 326, p. 292. https://doi.org/10.1016/S0925-8388(01)01287-7.

    Article  CAS  Google Scholar 

  23. Kihal, A., Bouzabata, B., Fillion, G., and Fruchart, D., Phys. Procedia, 2009, vol. 2, p. 665. https://doi.org/10.1016/j.phpro.2009.11.008.

    Article  CAS  Google Scholar 

  24. Il’in, A.A., Smirnov, N.N., and Il’in, A.P., Izv. Vuzov, Ser. Khim. Khim. Tekhnol., 2005, no. 1, p. 41.

    Google Scholar 

  25. Lemine, O.M., Sajieddine, M., Bououdina, M., Msalam, R., Mufti, S., and Alyamani, A., J. Alloys Compd., 2010, vol. 502, p. 279. https://doi.org/10.1016/j.jallcom.2010.04.175.

    Article  CAS  Google Scholar 

  26. Zdujic, M., Jovalekic, C., Karanovic, L., Mitric, M., Poleti, D., and Skala, D., Mater. Sci. Eng. (A), 1998, vol. 245, p. 109. https://doi.org/10.1016/S0921-5093(97)00715-6.

    Article  Google Scholar 

  27. Rendon, J.L. and Serna, C.J., Clay Miner., 2081, vol. 16, p. 375. https://doi.org/10.1180/claymin.1981.016.4.06.

    Article  Google Scholar 

  28. Chukanov, N.V., Infrared Spectra of Mineral Species, Dordrecht: Springer, 2014, vol. 1, p. 250.

    Google Scholar 

  29. Khalil, M., Yu, J., Liu, N., and Lee, R.L., Colloid. Surf. (A), 2014, vol. 453, p. 7. https://doi.org/10.1016/j.colsurfa.2014.03.064

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of Russian Federation (ID RFMEFI62117X0018). TEM studies were performed at the Center for Collective Usage “Materials Science and Diagnostics in Modern Technology”, Ioffe Institute, St. Petersburg, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kalinkin.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 12, pp. 1949–1954.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinkin, A.M., Kuz’mich, Y.V., Zalkind, O.A. et al. Preparation of Nanosized α-Fe2O3 Using Mechanical Activation. Russ J Gen Chem 89, 2453–2457 (2019). https://doi.org/10.1134/S107036321912020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321912020X

Keywords

Navigation