Skip to main content
Log in

Mossbauer spectroscopy study of Fe@ZrO2 nanocomposites formation by MA SHS technology

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Particles with core-in-shell structure Fe@ZrO2 were synthesized by step-by-step technology including formation of mechanically pre-activated (MA) precursors with Fe/Zr and Fe2O3/[Fe/Zr] composite structures formation following by Self-Propagated High temperature synthesis (SHS). Mossbauer spectroscopy, Transmission and Scanning electron Microscopy have been performed to study the peculiarities of local structure and its evolution through the sequential synthesis steps via various milling periods and reagent compositions. The exact conditions for iron core in oxide shell Fe@ZrO2 structure formation with promising functionality has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sharma, S.K. (ed.): Complex Magnetic Nanostructures, vol. 201. Springer, Berlin (2009). https://doi.org/10.1007/978-3-319-52087-2

  2. Kalele, S., Gosavi, S.W., Urban, J., Kulkarni, S.K.: Nanoshell particles: synthesis, properties and applications. Curr. Sci. 91(8), 1038–1052 (2006)

    Google Scholar 

  3. Chaubey, G.S., Kim, J.: Structure and magnetic characterization of core-shell Fe@ZrO2 nanoparticles synthesized by sol-gel process. Bull. Korean Chem. Soc. 28 (12), 2279–2282 (2007). https://doi.org/10.5012/bkcs.2007.28.12.227

    Article  Google Scholar 

  4. Kwak, H., Chaudhuri, S.: Role of vacancy and metal doping on combustive oxidation of Zr/ZrO2 core-shell particles. Surf. Sci. 604, 2116–2128 (2010). https://doi.org/10.1016/j.susc.2010.09.002

    Article  ADS  Google Scholar 

  5. Sarkar, A., Biswas, S.K., Pramanik, P.: Design of a new nanostructure comprising mesoporous ZrO2 shell and magnetite core (Fe3O4@mZrO2) and study of its phosphate ion separation efficiency. J. Mater. Chem. 20, 4417–4424 (2010). https://doi.org/10.1039/b925379c/

    Article  Google Scholar 

  6. Srdić, V.V., Mojić, B., Nikolić, M., Ognjanović, S.: Recent progress on synthesis of ceramics core/shell nanostructures. Process. Appl. Ceram. 7(2), 45–62 (2013). https://doi.org/10.2298/PAC1302045S

    Article  Google Scholar 

  7. Shafrir, S.N., Romanofsky, H.J., Skarlinski, M., Wang, M., Miao, Ch., Salzman, S., Chartier, T., Mici, J., Lambropoulos, J.C., Shen, R., Yang, H., Jacobs, S.D.: Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics. Appl. Opt. 48(35), 6797–6810 (2009). https://doi.org/10.1364/AO.48.006797

    Article  ADS  Google Scholar 

  8. Shen, R., Shafrir, S.N., Miao, Ch., Wang, M., Lambropoulos, J.C., Jacobs, S.D., Yang, H.: Synthesis and corrosion study of zirconia-coated carbonyl iron particles. J. Colloid Interface Sci. 342, 49–56 (2010). https://doi.org/10.1016/j.jcis.2009.09.033

    Article  ADS  Google Scholar 

  9. Shi, C.Y., Wang, W.-Q., Fang, J.G., Wu, J.W., Yuan, L.: The study of preparation conditions for magnetic iron zirconium co-oxide microspheres. Mater. Manuf. Process. 27(11), 1149–1153 (2012). https://doi.org/10.1080/10426914.2011.610114

    Article  Google Scholar 

  10. Kiseleva, T., Letsko, A., Talako, T., Kovaleva, S., Grigorieva, T., Novakova, A., Lyakhov, N.: Possibility of the core-in-shell iron particles formation via ma shs technology. In: Proceedings of Fourteenth Bi-National Workshop 2015 “The Optimization of the Composition, Structure and Properties of Metals, Oxides, Composites, Nano and Amorphous Materials, pp. 35–47. Ariel University (2015)

  11. Rogachev, A.S., Mukas’yan, A.S.: Burning of heterogeneous nanostructured systems. Fiz. Goreniya Vzryva (in Russian) 46(3), 3–30 (2010)

    Google Scholar 

  12. Lyakhov, N.Z., Talako, T.L., Grigor’eva, T.F.: In: Lomovskii, O.I. (ed.) Mechanoactivation Effect in Phase- and Structure Formation Processes under Self-Propagating High-Temperature Synthesis. [in Russian]. Parallel’, Novosibirsk (2008)

  13. Grigor’eva, T.F., Letsko, A.I., Talako, T.L, Tsybulya, S.V., Vorsina, I.A., Barinova, A.P., Il’yushchenko, A.F., Lyakhov, N.Z.: The way to produce Cu/ZrO2 composites by combining mechanical activation and self-propagating high-temperature synthesis. Combust. Explos. Shock Waves 47, 174 (2011). https://doi.org/10.1134/S001050821

    Article  Google Scholar 

  14. Grigor’eva, T.F., Letsko, A.I., Talako, T.L., Tsybulya, S.V., Vorsina, I.A., Barinova, A.P., Il’yushchenko, A.F., Lyakhov, N.Z.: The way to produce Cu/TiO2 composites by combining mechanical activation and self-propagating high-temperature synthesis. Russ. J. Appl. Chem. 84 (11), 1765–1768 (2011). https://doi.org/10.1134/S1070427211110024

    Article  Google Scholar 

  15. Kiseleva, T.Yu., Letsko, A.I, Talako, T.L., Griroryeva, T.F., Novakova, A.A., Lyakhov, N.Z: Mechanochemically synthesized powder precursors local structure influence on the microstructure of SHS @ composites. Nanotechnol. Russ. 10, 220–230 (2015). https://doi.org/10.1134/S1995078015020123

    Article  Google Scholar 

  16. Kiseleva, Y., Novakova, A.: Mossbauer spectroscopy in the technology of nanocomposite functional materials. Bull. Russ. Acad. Sci. Phys. 79 (8), 1002–1007 (2015). https://doi.org/10.3103/S1062873815080122

    Article  Google Scholar 

  17. Konygin, G.N., Stevulova, N., Dorofeev, G.A., Elsukov, E.P.: Effect of crushing bodies onto results of mechanical alloying of Fe and Si powders mixtures. Khim. Interes. Ustoich. Razvit. 10(1–2), 119–126 (2002)

    Google Scholar 

  18. Schneider, C.A., Rasband, W.S., Eliceiri, K.W.: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012). https://doi.org/10.1038/nmeth.2089

    Article  Google Scholar 

  19. Bruggemann, S.A., Artzybashev, Y.A., Orlov, S.V.: (UNIVEM) Version 2.07 (2001–2003)

  20. Lyakishev, N.P. (ed.): State Diagrams for Double Metallic Systems. Mashinostroenie, Moscow (1996). [in Russian]

  21. Del Bianko, L., Hernando, A., Bonetti, E.: Grainboundary structure and magnetic behavior in nanocrystalline ball-milled iron. Phys. Rev. B 56(14), 8894–8901 (1997). https://doi.org/10.1103/PhysRevB.56.8894

    Article  ADS  Google Scholar 

  22. Gleiter, H.: Materials with ultrafine microstructures: retrospectives and perspectives. Nanostruct. Mater. 1, 1–19 (1992). https://doi.org/10.1016/0965-9773(92)90045-Y

    Article  Google Scholar 

  23. Novakova, A.A., Agladze, O.V., Kiseleva, T.Yu., Tarasov, B.P., Perov, N.S.: The grain boundary structure influence n the magnetic properties of nanocrystalline iron. Bull. Russ. Acad. Sci. Phys. 65(7), 1016–1021 (2001)

    Google Scholar 

  24. Kim, H.S., Estrin, Y., Bush, M.B.: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48(2), 493–504 (2000). https://doi.org/10.1016/S1359-6454(99)00353-5

    Article  Google Scholar 

  25. Weiss, B.Z., Bamberger, M., Stupel, M.M.: Phase transformation in the Zr-rich part of the Zr-Fe system resulting from heat treatment and plastic deformation. Metall. Trans. A. 18A, 27–33 (1987). https://doi.org/10.1007/BF02646218

    Article  ADS  Google Scholar 

  26. Filippov, V.P.: Potentialities of Mossbauer spectroscopy for studying zirconium alloys and their oxide films. Met. Sci. Heat Treat. 45(11–12), 452–460 (2003)

    Article  ADS  Google Scholar 

  27. Filippov, V.P., Bateev, A.B., Lauer, Yu.A., Kargin N.I.: Mossbauer spectroscopy of zirconium alloys. Hyperfine Interact. 217, 45–55 (2013). https://doi.org/10.1007/s10751-012-0747-8

    Article  ADS  Google Scholar 

  28. Lomovskii, O.I. (ed.): Mechanocomposites Precursors for Creating Materials with New Properties,. Siberian Branch RAS, Novosibirsk (2010) [in Russian]

  29. Kiseleva, T.Y., Novakova, A.A., Chistyakova, M.I., Polyakov, A.O., Gendler, T.S., Grigorieva, T.F.: Iron-based amorphous magnetic phase formation in the course of Fe and F2O3 mechanical activation. Diffus. Defect Data Part B: Solid State Phenom. 152, 25–28 (2009). https://doi.org/10.4028/www.scientific.net/SSP.152-153.25

    Google Scholar 

  30. Grigor’eva, T.F., Barinova, A.P., Lyakhov, N.Z.: Mechanochamical Synthesis in Metallic Systems. Parallel’, Novosibirsk (2008) [in Russian]

    Google Scholar 

  31. Kiseleva, T.Yu., Novakova, A.A., Grigor’eva, T.F., Barinova, A.P., Vorsina, I.A.: Mechanical synthesis for corundum ceramics/intermetallide nanocomposites. Adv. Mater. (Russ.) 6, 11–20 (2008)

    Google Scholar 

  32. Kiseleva, T., Novakova, A., Zimina, M., Polyakov, S., Levin, E., Grigoryeva, T.: Mechanochemically induced formation of amorphous phase at oxide nanocomposite interfaces. J. Phys.: Conf. Ser. 217(1), 012106–012106 (2010). https://doi.org/10.1088/1742-659,6/217/1/012106

    Article  Google Scholar 

  33. Stefanic, G., Music, S., Gajovic, A.: Structural and microstructural changes in monoclinic ZrO2 during ball milling with stainless steel assembly. Mater. Res. Bull. 41, 764–777 (2006). https://doi.org/10.1016/j.materresbull.2005.10.006

    Article  Google Scholar 

  34. Jiang, J.Z., Poulsen, F.W., Morup, S.: Structure and thermal stability of nanostructured iron-doped zirconia prepared by high energy ball milling. J. Mater. Res. 14(4), 1343–1452 (1999). https://doi.org/10.1557/JMR.1999.0183

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Siberian Branch of the Russian Academy of Sciences, the National Academy of Science of Belarus and Moscow University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kiseleva.

Additional information

This article is part of the Topical Collection on Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 2017), Saint-Petersburg, Russia, 3–8 September 2017

Edited by Valentin Semenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiseleva, T., Letsko, A., Talako, T. et al. Mossbauer spectroscopy study of Fe@ZrO2 nanocomposites formation by MA SHS technology. Hyperfine Interact 239, 14 (2018). https://doi.org/10.1007/s10751-018-1490-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-018-1490-6

Keywords

Navigation