Skip to main content
Log in

Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball-milling method and investigation of their catalytic activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, hematite nanoparticles (α-Fe2O3 NPs) with spherical morphology were synthesized by high-energy ball-milling method for different milling times (40 and 60 h) at dry medium. The synthesized α-Fe2O3 NPs were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM) techniques. An average particle size (APS) of α-Fe2O3 NPs after 40 and 60 h is estimated to be about 23 and 20 nm, respectively. The FE-SEM images of AP + α-Fe2O3 nanocomposites affirm the nearly spherical structure with APS of 80–120 μm without any agglomeration. Thermal analysis investigation was illustrated; the α-Fe2O3 NPs exhibit excellent promoting effect on thermal decomposition properties of ammonium perchlorate (AP) particles. The differential scanning calorimetry and thermogravimetry analysis results showed that α-Fe2O3 NPs with 20 nm had an excellent catalytic effect on the AP thermal decomposition property and by adding 5% additive, decomposition temperatures decreased by 61 °C, and the heat of decomposition increased by 482 J g−1, respectively. The kinetics and thermodynamic parameters obtained by Kissinger, Boswell, Ozawa and Starink methods were shown that in the presence of α-Fe2O3 NPs a considerable reduction in the apparent activation energy of thermal decomposition processes was occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davenas A. Solid rocket propulsion technology. 1st ed. Oxford: Pergamon Press; 1993.

    Google Scholar 

  2. Sutton GP. Rocket propulsion elements. 8th ed. New York: Wiley; 2010.

    Google Scholar 

  3. Hosseini SG, Ahmadi R, Ghavi A, Kashi A. Synthesis and characterization of α-Fe2O3 mesoporous using SBA-15 silica as template and investigation of its catalytic activity for thermal decomposition of ammonium perchlorate particles. Powder Technol. 2015;278:316–22.

    Article  CAS  Google Scholar 

  4. Zhang Y, Wang N, Huang Y, Wu W, Huang C, Meng C. Fabrication and catalytic activity of ultra-long V2O5 nanowires on the thermal decomposition of ammonium perchlorate. Ceram Int. 2014;40:11393–8.

    Article  CAS  Google Scholar 

  5. Singh G, Kapoor IPS, Dubey R, Srivastava P. Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng B. 2011;176:121–6.

    Article  CAS  Google Scholar 

  6. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2011;217:330–9.

    Article  Google Scholar 

  7. Hosseini SG, Abazari R, Ghavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.

    Article  CAS  Google Scholar 

  8. Wheeler DA, Wang G, Ling Y, Li Y, Zhang JZ. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photo electrochemical properties. Energy Environ Sci. 2012;5:6682–702.

    Article  CAS  Google Scholar 

  9. Zhu D, Zhang J, Song J, Wang H, Yu Z, Shen Y, Xie A. Efficient one-pot synthesis of hierarchical flower-like α-Fe2O3 hollow spheres with excellent adsorption performance for water treatment. Appl Surf Sci. 2013;284:855–61.

    Article  CAS  Google Scholar 

  10. Dumitrache F, Morjan I, Fleaca C, Badoi A, Manda G, Pop S, Marta DS, Huminic G, Huminic A, Vekas L, Daia C, Marinica O, Luculescu C, Niculescu AM. Highly magnetic Fe2O3 nanoparticles synthesized by laser pyrolysis used for biological and heat transfer applications. Appl Surf Sci. 2015;336:297–303.

    Article  CAS  Google Scholar 

  11. Huang Y, Chen W, Zhang S, Kuang Z, Ao D, Alkurd NR, Zhou W, Liu W, Shen W, Li Z. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl Surf Sci. 2015;351:1025–33.

    Article  CAS  Google Scholar 

  12. Su X, Yu C, Qiang C. Synthesis of α-Fe2O3 nano-belts and nano-flakes by thermal oxidation and study to their magnetic properties. Appl Surf Sci. 2011;257:9014–8.

    Article  CAS  Google Scholar 

  13. Tadica M, Panjan M, Damnjanovicc V, Milosevic I. Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method. Appl Surf Sci. 2014;320:183–7.

    Article  Google Scholar 

  14. Tang B, Wang G, Zhuo L, Ge J, Cui L. Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of a-Fe2O3 nanorods. Inorg Chem. 2006;45:5196–200.

    Article  CAS  Google Scholar 

  15. Pourghahramani P, Forssberg E. Changes in the structure of hematite by extended dry grinding in relation to imposed stress energy. Powder Technol. 2007;178:30–9.

    Article  CAS  Google Scholar 

  16. Borzi RA, Stewart SJ, Punte G, Mercader RC, Vasquez-Mansilla M, Zysler RD, Cabanillas ED. Magnetic interactions in hematite small particles obtained by ball milling. J Magn Mater. 1999;205:234–40.

    Article  CAS  Google Scholar 

  17. Bid S, Banerjee A, Kumar S, Pradhan SK, Dec U, Banerjee D. Nanophase iron oxides by ball-mill grinding and their Mossbauer characterization. J Alloys Compd. 2001;326:292–7.

    Article  CAS  Google Scholar 

  18. Patil PR, Krishnamurthy VN, Joshi SS. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos Pyrotech. 2006;31:442–6.

    Article  CAS  Google Scholar 

  19. Joshi SS, Patil PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. Def Sci J. 2008;58:721–7.

    Article  CAS  Google Scholar 

  20. Ma Z, Li F, Bai H. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Propellants Explos Pyrotech. 2006;31:447–51.

    Article  CAS  Google Scholar 

  21. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2009;34:351–6.

    Article  CAS  Google Scholar 

  22. Ma Z, Wu R, Song J, Li C, Chen R, Zhang L. Preparation and characterization of Fe2O3/ammonium perchlorate (AP) nanocomposites through ceramic membrane anti-solvent crystallization. Propellants Explos Pyrotech. 2012;37:183–90.

    Article  CAS  Google Scholar 

  23. Song L, Zhang S, Chen B, Ge J, Jia X. A hydrothermal method for preparation of α-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium perchlorate. Colloids Surf A Physico-Chem Eng Asp. 2010;360:1–5.

    Article  CAS  Google Scholar 

  24. Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C. Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184:387–90.

    Article  CAS  Google Scholar 

  25. http://www.jcrystal.com/steffenweber/JAVA/JSV/jsv.html.

  26. Zou M, Wang X, Jiang X, Lu L. In-situ and self-distributed: a new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd2O3. J Solid State Chem. 2014;213:235–41.

    Article  CAS  Google Scholar 

  27. Lu S, Jing X, Liu J, Wang J, Liu Q, Zhao Y, Jamil S, Zhang M, Liu L. Synthesis of porous sheet-like Co3O4 microstructure by precipitation method and its potential applications in the thermal decomposition of ammonium perchlorate. J Solid State Chem. 2013;197:345–51.

    Article  CAS  Google Scholar 

  28. Hosseini SG, Toloti SJH, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124:1243–54.

    Article  CAS  Google Scholar 

  29. Conesa JA, Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim Acta. 2011;523:176–81.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  31. Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal. 1980;18:353–8.

    Article  CAS  Google Scholar 

  32. Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  33. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of iso-conversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  34. Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta. 1996;288:97–104.

    Article  CAS  Google Scholar 

  35. ASTM E698–05. Standard test method for Arrhenius kinetic constants for thermally unstable materials, ASTM International. West Conshohocken, PA, 2005.

  36. Eslami A, Hosseini SG. Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. J Therm Anal Calorim. 2011;104:671–8.

    Article  CAS  Google Scholar 

  37. Wang W, Chen S, Gao S. Syntheses and characterization of lead(II) N, N-Bis[1(2)H-tetrazol-5-yl]amine compounds and effects on thermal decomposition of ammonium perchlorate. Eur J Inorg Chem. 2009;2009:3475–80.

    Article  Google Scholar 

  38. Pourmortazavi SM, Hosseini SG, Rahimi-Nasrabadi M, Hajimirsadeghi SS, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  Google Scholar 

  39. Ayoman E, Hosseini SG. Synthesis of CuO nanopowders by high-energy ball milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123:1213–24.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ghorban Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.G., Ayoman, E. Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball-milling method and investigation of their catalytic activity. J Therm Anal Calorim 128, 915–924 (2017). https://doi.org/10.1007/s10973-016-5969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5969-6

Keywords

Navigation