Skip to main content
Log in

Unexpected Dual Acylation of Naphtho[2,1-b]furan at the Aryl and Hetaryl Ring: Experimental and Theoretical Study

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Depending on the reaction conditions, the acylation of 2-ethylnaphtho[2,1-b]furan leads to the formation of a mixture of 1-acetyl-, 5-acetyl-, and 1,5-diacetyl derivatives with a widely varying ratio of components, the structure of which has been characterized by IR and NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis methods. Quantum-chemical simulations using the DFT B3LYP/6-311++G** method have reproduced the experimental geometry of isomeric acetyl[2,1-b]furans and indicated their close thermodynamic stability. However, the Fukui indices of the reactivity f have indicated the preference of the primary attack of the electrophile at the C5 position (f = 0.18) as compared to the C1 position (f = 0.06).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasne, C., Venegas, W., Royer, R., and Chouroulinkov, I., Jap. J. Cancer Res., 1987, vol. 78, no. 6, p. 565. doi https://doi.org/10.20772/cancersci1985.78.6_565

    CAS  Google Scholar 

  2. Nagaraja, G.K., Prakash, G.K., Kumaraswamy, M.N., Vaidya, V.P., and Mahadevan, K.M., Arkivoc, 2006, no. 15, p. 160. doi https://doi.org/10.3998/ark.5550190.0007.f19

  3. Srivastava, V., Negi, A.S., Kumar, J.K., Faridi, U., Sisodia, B.S., Darokar, M.P., Luqman, S., and Khanuja, S.P.S., Bioorg. Med. Chem. Lett., 2006, vol. 16, no. 4, p. 911. doi https://doi.org/10.1016/j.bmcl.2005.10.105

    Article  CAS  PubMed  Google Scholar 

  4. Vagdevi, H.M., Vaidya, V.P., Latha, K.P., and Padmashali, B., Ind. J. Pharm. Sci., 2006, vol. 68, no. 6, p. 719. doi https://doi.org/10.4103/0250-474X.31002

    Article  CAS  Google Scholar 

  5. Ramesh, D., Chandrashekhar, C., and Vaidya, V.P., Ind. J. Chem. (B), 2008, vol. 47, p. 753. doi https://doi.org/10.1002/chin.200835144

    Google Scholar 

  6. Devi, K.S., Ramaiah, M., Roopa, D.L., and Vaidya, V.P., J. Chem., 2010, vol. 7, no. S1, p. S358. doi https://doi.org/10.1155/2010/863547

    Google Scholar 

  7. Abd El-Wahab, A.H.F., Al-Fifi, Z.I.A., Bedair, A.H., Ali, F.M., Halawa, A.H.A., and El-Agrody, A.M., Molecules, 2011, vol. 16, no. 1, p. 307. doi https://doi.org/10.3390/molecules16010307

    Article  CAS  Google Scholar 

  8. Halli, M.B., Sumathi, R.B., and Kinni, M., Spectrochim. Acta (A), 2012, vol. 99, p. 46. doi https://doi.org/10.1016/j.saa.2012.08.089

    Article  CAS  Google Scholar 

  9. Sumathi, R.B. and Halli, M.B., Bioinorg. Chem. Appl., 2014, vol. 2014. doi https://doi.org/10.1155/2014/942162

  10. Le Guével, R., Oger, F., Lecorgne, A., Dudasova, Z., Chevance, S., Bondon, A., Barath, P., Simonneaux, G., and Salbert, G., Bioorg. Med. Chem., 2009, vol. 17, no. 19, p. 7021. doi https://doi.org/10.1016/j.bmc.2009.07.079.

    Article  CAS  PubMed  Google Scholar 

  11. Sousa, C.M., Berthet, J., Delbaere, S., and Coelho, P.J., Dyes Pigm., 2017, vol. 137, p. 593. doi https://doi.org/10.1016/j.dyepig.2016.11.001

    Article  CAS  Google Scholar 

  12. Sousa, C., Saraiva, S., Macedo, H., and Coelho, P., Dyes Pigm., 2017, vol. 141, p. 269. doi https://doi.org/10.1016/j.dyepig.2017.02.027

    Article  CAS  Google Scholar 

  13. Guan, J., Zhang, P., Wei, T., Lin, Q., Yao, H., and Zhang, Y., RSC Adv., 2014, vol. 4, no. 67, p. 35797. doi https://doi.org/10.1039/C4RA04130E

    Article  CAS  Google Scholar 

  14. Qu, W., Guan, J., Wei, T., Yan, G., Lin, Q., and Zhang, Y., RSC Adv., 2016, vol. 6, no. 42, p. 35804. doi https://doi.org/10.1039/C6RA05381E

    Article  CAS  Google Scholar 

  15. Anwar, S., Huang, W., Chen, C., Cheng, Y., and Chen, K., Chem. Eur. J., 2013, vol. 19, no. 13, p. 4344. doi https://doi.org/10.1002/chem.201204221

    Article  CAS  PubMed  Google Scholar 

  16. Pareek, A., Dada, R., Rana, M., Sharma, A.K., and Yaragorla, S., RSC Adv., 2016, vol. 6, no. 92, p. 89732. doi https://doi.org/10.1039/C6RA17411F

    Article  CAS  Google Scholar 

  17. Uchuskin, M.G., Shcherbinin, V.A., and Butin, A.V., Chem. Heterocycl. Compd., 2014, vol. 50, no. 5, p. 619. doi https://doi.org/10.1007/s10593-014-1515-2

    Article  CAS  Google Scholar 

  18. Gilchrist, T.L., Heterocyclic Chemistry, London: Longman, 1992.

    Google Scholar 

  19. Katritzky, A.R. and Pozharskii, A.F., Handbook of Heterocyclic Chemistry, Amsterdam: Pergamon, 2000.

    Google Scholar 

  20. Joule, J.A. and Mills, K., Heterocyclic Chemistry, Oxford: Wiley, 2010.

    Google Scholar 

  21. Modern Heterocyclic Chemistry, Alvarez-Builla, J., Vaquero, J.J., and Barluenga, J., Eds., Weinheim: Wiley-VCH, 2011. doi https://doi.org/10.1002/9783527637737

    Google Scholar 

  22. Yokoyama, Y., Chem. Rev, 2000, vol. 100, no. 5, p. 1717. doi https://doi.org/10.1021/cr980070c

    Article  CAS  PubMed  Google Scholar 

  23. Yokoyama, Y. and Kose, M.J., Photochem. Photobiol. (A), 2004, vol. 166, nos. 1–3, p. 9. doi https://doi.org/10.1016/j.jphotochem.2004.04.023

    Article  CAS  Google Scholar 

  24. Liang, Y.C., Dvornikov, A.S., and Rentzepis, P.M., Macromolecules, 2002, vol. 35, no. 25, p. 9377. doi https://doi.org/10.1021/ma0207500

    Article  CAS  Google Scholar 

  25. Liang, Y.C., Dvornikov, A.S., and Rentzepis, P.M., Res. Chem. Intermed., 1998, vol. 24, p. 905. doi https://doi.org/10.1163/156856798X00609

    Article  CAS  Google Scholar 

  26. Yokoyama, Y., Tanaka, T., Yamane, T., and Kurita, Y., Chem. Lett, 1991, vol. 20, no. 7, p. 1125. doi https://doi.org/10.1246/cl.1991.1125

    Article  Google Scholar 

  27. Balenko, S.K., Rybalkin, V.P., Shepelenko, E.N., Popova, L.L., Makarova, N.I., Metelitsa, A.V., Bren, V.A., and Minkin, V.I., Russ. J. Org. Chem., 2006, vol. 42, no. 12, p. 1861. doi https://doi.org/10.1134/S1070428006120190

    Article  CAS  Google Scholar 

  28. Bisagni, M., Buu-Hoï, N.P., and Royer, R., J. Chem. Soc., 1955, p. 3688. https://doi.org/10.1039/JR9550003688

  29. Gabbutt, C.D., Heron, B.M., Kolla, S.B., Kilner, C., Coles, S.J., Horton, P.N., and Hursthouse, M.B., Org. Biomol. Chem., 2008, vol. 6, no. 17, p. 3096. doi https://doi.org/10.1039/B807744D

    Article  CAS  PubMed  Google Scholar 

  30. Gel’man, N.E., Terent’eva, N.A., Shanina, G.M., Kiparenko, L.M., and Rezl, V., Metody kolichestvennogo organicheskogo elementnogo mikroanaliza, (Methods of Quantitative Organic Elemental Microanalysis), Moscow: Khimiya 1987.

    Google Scholar 

  31. Sheldrick, G.M., SHELXTL, Structure Determination Software Suite. Version 6.14. Madison, Wisconsin, USA: Bruker AXS, 2000.

    Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision, D.01. Wallingford, CT: Gaussian, 2013.

    Google Scholar 

  33. Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  34. Barone, V. and Cossi, M., J. Phys. Chem. (A), 1998, vol. 102, no. 11, p. 1995. doi https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in the scope of the basic part of the State Task of the Ministry of Education and Science of the Russian Federation in the field of scientific activity [no. 4.6497.2017/8.9, 4.5593.2017/6.7 (Southern Federal University), 0089-2014-0009 (Institute of Problems of Chemical Physics of Russian Academy of Sciences), and 01201354239 (Southern Scientific Center of Russian Academy of Sciences)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Dubonosov.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Obshchei Khimii, 2019, Vol. 89, No. 7, pp. 1013–1020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybalkin, V.P., Zmeyeva, S.Y., Tkachev, V.V. et al. Unexpected Dual Acylation of Naphtho[2,1-b]furan at the Aryl and Hetaryl Ring: Experimental and Theoretical Study. Russ J Gen Chem 89, 1377–1383 (2019). https://doi.org/10.1134/S1070363219070041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219070041

Keywords

Navigation