Skip to main content
Log in

Conformational Properties of Ethane and Its Analogs in Nanotubes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Modern approaches to understanding the origin of the internal rotation barrier in ethane and its analogs were reviewed. Computer simulation revealed the inversion of the relative stability of the staggered and eclipsed forms of such compounds in the cavity of nanotubes. Conformational behavior of disilane, methanol, methylmercaptan, hydroxyborane, diborane, and hydrazine molecules in nanotubes was also examined. It was concluded that the orbital interactions energy constitutes an important contribution to stabilization of the staggered form of ethane and its analogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Internal Rotation in Molecules, Orville-Thomas, W.J., Ed., New York: Wiley, 1974.

  2. Kundu, T., Pradhan, B., and Singh, B.P., J. Chem. Sci., 2002, vol. 114, no. 6, p. 623. doi https://doi.org/10.1007/BF02708856

    Article  CAS  Google Scholar 

  3. Liu, S.B., J. Chem. Phys., 2007, vol. 126, no. 24, p. 244103. doi https://doi.org/10.1063/1.2747247

    Article  CAS  PubMed  Google Scholar 

  4. Liu, S.B. and Govind, N., J. Phys. Chem. A, 2009, vol. 112, no. 29, p. 6690. doi https://doi.org/10.1021/jp800376a

    Article  CAS  Google Scholar 

  5. Pophristic, V. and Goodman, L., Nature (London), 2001, vol. 411, p. 565. doi https://doi.org/10.1063/1.1389843

    Article  CAS  Google Scholar 

  6. Rico, J.F., López, R., Ema, I., and Ramirez, G., J. Chem. Phys., 2003, vol. 119, no. 23, p. 12251. doi https://doi.org/10.1063/1.1624829

    Article  CAS  Google Scholar 

  7. Liu, S.B., Govind, N., and Pedersen, L.G., J. Chem. Phys., 2008, vol. 129, no. 9, p. 094104. doi https://doi.org/10.1063/1.2976767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sadlej-Sosnowska, N., J. Phys. Chem. A, 2003, vol. 107, no. 41, p. 8671. doi https://doi.org/10.1021/jp030152r

    Article  CAS  Google Scholar 

  9. Liu, S.B., J. Phys. Chem. A, 2013, vol. 117, no. 5, p. 962. doi https://doi.org/10.1021/jp312521z

    Article  CAS  PubMed  Google Scholar 

  10. Liu, S.B. and Schauer, C.K., J. Chem. Phys., 2015, vol. 142, no. 5, p. 054107. doi https://doi.org/10.1063/1.4907365

    Article  CAS  PubMed  Google Scholar 

  11. Alipour, M., Chem. Phys., 2014, vol. 434, p. 11. doi https://doi.org/10.1016/j.chemphys.2014.02.008

    Article  CAS  Google Scholar 

  12. Song, L., Lin, Y., Zhang, Q., and Mo, Y., J. Phys. Chem. A, 2005, vol. 109, no. 10, p. 2310. doi https://doi.org/10.1021/jp044700s

    Article  CAS  PubMed  Google Scholar 

  13. Mo, Y. and Gao, J., Acc. Chem. Res., 2007, vol. 40, no. 2, p. 113. doi https://doi.org/10.1021/ar068073w

    Article  CAS  PubMed  Google Scholar 

  14. Mo, Y., WIREs Comput. Mol. Sci., 2011, vol. 1, p. 164. doi https://doi.org/10.1002/wcms.22

    Article  CAS  Google Scholar 

  15. Esquivel, R.O., Liu, S.B., Angulo, J.C., Dehesa, J.S., Antolin, J., and Molina-Espiritu, M., J. Phys. Chem. A, 2011, vol. 115, no. 17, p. 4406. doi https://doi.org/10.1021/jp1095272_J

    Article  CAS  PubMed  Google Scholar 

  16. Baranac-Stojanović, M., Struct. Chem., 2015, vol. 26, no. 4, p. 989. doi https://doi.org/10.1007/s11224-014-0557-5

    Article  CAS  Google Scholar 

  17. Quijano-Quiñones, R.F., Quesadas-Rojas, M., Cuevas, G., and Mena-Rejón, G.J., Molecules, 2012, vol. 17, no. 4, p. 4661. doi https://doi.org/10.3390/molecules17044661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manzetti, S., Adv. Manuf., 2013, vol. 1, no. 3, p. 198. doi https://doi.org/10.1007/s40436-013-0030-5

    Article  Google Scholar 

  19. Dappe, Y.J., J. Phys. D: Appl. Phys., 2014, vol. 47, p. 083001. doi https://doi.org/10.1088/0022-3727/47/8/083001

    Article  CAS  Google Scholar 

  20. Ramachandran, C.N., Fazio, D.D., Sathyamurthy, N., and Aquilanti, V., Chem. Phys. Lett., 2009, vol. 473, p. 146. doi https://doi.org/10.1016/j.cplett.2009.03.068

    Article  CAS  Google Scholar 

  21. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, no. 3, p. 820. doi https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  22. Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 2, p. 313. doi https://doi.org/10.1134/S1070428013020231

    Article  CAS  Google Scholar 

  23. Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 8, p. 1231. doi https://doi.org/10.1134/S107042801308023X

    Article  CAS  Google Scholar 

  24. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2334. doi https://doi.org/10.1134/S1070363213120190

    Article  CAS  Google Scholar 

  25. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1165. doi https://doi.org/10.1134/S1070363213060285

    Article  CAS  Google Scholar 

  26. Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 10, p. 1534. doi https://doi.org/10.1134/S1070428014100200

    Article  CAS  Google Scholar 

  27. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 8, p. 1623. doi https://doi.org/10.1134/S1070363213080264

    Article  CAS  Google Scholar 

  28. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 7, p. 1455. doi https://doi.org/10.1134/S1070363213070268

    Article  CAS  Google Scholar 

  29. Kuznetsov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 3, p. 433. doi https://doi.org/10.1134/S1070363214030049

    Article  CAS  Google Scholar 

  30. Kuznetsov, V.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 8, p. 1989. doi https://doi.org/10.1134/S1070363215080356

    Article  CAS  Google Scholar 

  31. Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 5, p. 765. doi https://doi.org/10.1134/S1070428014050285

    Article  CAS  Google Scholar 

  32. Kuznetsov, V.V., Mezhd. Zh. Eksp. Obraz., 2014, no. 8, part 2, p. 58.

  33. Gren’, A.I. and Kuznetsov, V.V., Khimiya tsiklicheskikh efirov bornykh kislot (Chemistry of Cyclic Esters of Boronic Acids), Kiev: Naukova Dumka, 1988).

    Google Scholar 

  34. Kuznetsov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 1, p. 157. doi https://doi.org/10.1134/S107036321401023X

    Article  CAS  Google Scholar 

  35. Kuznetsov, V.V., Mezhd. Zh. Eksp. Obraz., 2015, no. 8, part 1, p. 139.

  36. Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 231. doi https://doi.org/10.1134/S1070363216020055

    Article  CAS  Google Scholar 

  37. Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2000. doi https://doi.org/10.1134/S1070363216090048

    Article  CAS  Google Scholar 

  38. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1163. doi https://doi.org/10.1134/S1070363213060273

    Article  CAS  Google Scholar 

  39. Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 3, p. 456. doi https://doi.org/10.1134/S1070428014030312

    Article  CAS  Google Scholar 

  40. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 9, p. 1790. doi https://doi.org/10.1134/S1070363213090272

    Article  CAS  Google Scholar 

  41. Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 5, p. 1108. doi https://doi.org/10.1134/S1070363216050212

    Article  CAS  Google Scholar 

  42. Kuznetsov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 6, p. 1444. doi https://doi.org/10.1134/S1070363216060359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Additional information

Russian Text © The Author(s), 2017, published in Rossiiskii Khimicheskii Zhurnal, 2017, Vol. 61, No. 1, pp. 37–47.

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation (project no. 16.1969.2017/PCh).

Conflict of Interest

No conflict of interest was declared by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V. Conformational Properties of Ethane and Its Analogs in Nanotubes. Russ J Gen Chem 89, 1271–1278 (2019). https://doi.org/10.1134/S1070363219060239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363219060239

Keywords

Navigation