Skip to main content
Log in

Origin of methyl torsional potential barrier — An overview

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This paper presents the evolution of views on methyl internal rotation potential barrier. Various mechanisms proposed for the origin of torsional barrier in ethane have been reviewed. Inadequacy of one dimensional description of internal rotation has been highlighted in small methyl conjugated molecules in the light of its multidimensional nature. The effect of skeletal flexing on the picture of barrier formation by dissecting the barrier energy into potential type, virial type and symmetry type is described. The role of π and σ electrons at different stages of molecular flexing is discussed. The analysis identifies the dominant contributions to barrier origin as π-bonding changes during rigid rotation and σ-bonding changes resulting from bond lengthening during methyl group rotation. The contribution of lone pair electrons in determining the preferred structure of the methyl group in imine compounds such as 1-methyl 2-(1H)-pyridinimine is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielson H H 1932Phys. Rev. 40 445

    Article  Google Scholar 

  2. Philis J G, Berman J M and Goodman L 1990Chem. Phys. Lett. 167 16

    Article  CAS  Google Scholar 

  3. Kundu T, Thakur S N and Goodman L 1992J. Chem. Phys. 97 5410

    Article  CAS  Google Scholar 

  4. Gu H, Kundu T and Goodman L 1993J. Phys. Chem. 97 7194

    Article  CAS  Google Scholar 

  5. Lister D G, MacDonald J N and Owen N L 1978Internal rotation and inversion: An introduction to large amplitude motions in molecules (New York: Academic Press)

    Google Scholar 

  6. Reed A E and Weinhold F 1991Isr. J. Chem. 31 277

    CAS  Google Scholar 

  7. Payne W P and Allen L C 1977 InApplication of electronic structure theory (ed.) H F Shaefer (New York: Plenum) p. 29

    Google Scholar 

  8. Villard A 1974 InInternal rotation in molecules (ed.) W J Orville-Thomas (New York: John Wiley) p. 385

    Google Scholar 

  9. Ito M 1994 Large-amplitude motions of aromatic molecules as studied by supersonic jet spectroscopy.Dynamics of excited molecules (ed.) K Kuchitsu (Amsterdam: Elsevier Science) ch 5, p. 97

    Google Scholar 

  10. Spangler L H and Pratt D W 1995 InJet spectroscopy and molecular dynamics (eds) J M Hollas and D Phillips (London: Chapman and Hall) p. 369

    Google Scholar 

  11. Swalen J D and Costein C C 1959J. Chem. Phys. 31 1562

    Article  CAS  Google Scholar 

  12. Brant D M, Pugmire R J, Livingston R C, Strong K A, McMurry H L and Brugger R M 1970J. Chem. Phys. 52 4424;

    Article  Google Scholar 

  13. Ozkabak A and Goodman L 1992J. Chem. Phys. 96 5958

    Article  CAS  Google Scholar 

  14. Kemp D and Pitzer K S 1936J. Chem. Phys. 4 749

    Article  CAS  Google Scholar 

  15. Kemp D and Pitzer K S 1937J. Am. Chem. Soc. 59 276

    Article  CAS  Google Scholar 

  16. Pitzer K S 1937J. Chem. Phys. 5 466, 473

    Google Scholar 

  17. Pitzer R M 1951Discuss. Faraday Soc. 10 66

    Article  Google Scholar 

  18. Sovers O J, Kern C W, Pitzer R M and Karplus M 1968J. Chem. Phys. 49 2592

    Article  CAS  Google Scholar 

  19. Gavezzotti A and Bertell I S 1979J. Am. Chem. Soc. 101 5142

    Article  CAS  Google Scholar 

  20. Brunk T K and Weinhold F 1979J. Am. Chem. Soc. 101 1700

    Article  Google Scholar 

  21. Bader R W F, Cheeseman J K, Laidig K E, Wiberg K B and Breneman C 1990J. Am. Chem. Soc. 112 6530

    Article  CAS  Google Scholar 

  22. Goodman L, Gu H and Prophristic V 1999J. Chem. Phys. 110 4266

    Article  Google Scholar 

  23. Prophristic V and Goodman L 2001Nature (London) 411 565

    Article  Google Scholar 

  24. Belov S P, Yu Tretyakov M, Kleiner I and Hougan J T 1993J. Mol. Spectrosc. 160 61

    Article  CAS  Google Scholar 

  25. Kleiner I, Hougan J T, Suenram R D, Lovas F J and Godefroid M 1991J. Mol. Spectrosc. 148 38

    Article  CAS  Google Scholar 

  26. Kleiner I, Hougan J T, Suenram R D and Lovas F J 1992J. Mol. Spectrosc. 153 578

    Article  CAS  Google Scholar 

  27. Hollenstein H and Winther F 1978J. Mol. Spectrosc. 71 118

    Article  CAS  Google Scholar 

  28. Durig J R, Guirgis G and Bell S J 1989J. Phys. Chem. 93 348

    Google Scholar 

  29. Hadad C M, Foresman J B and Wiberg K B 1993J. Phys. Chem. 97 4293

    Article  CAS  Google Scholar 

  30. Jorgensen W L and Allen L C 1971J. Am. Chem. Soc. 93 567

    Article  Google Scholar 

  31. Munoz-Caro, C, Nino A and Moule D C 1994Theor. Chim. Acta 88 299

    Article  CAS  Google Scholar 

  32. Goodman L, Kundu T and Leszczynski J 1995J. Am. Chem. Soc. 117 2082

    Article  CAS  Google Scholar 

  33. Wiberg K B and Martini E 1985J. Am. Chem. Soc. 107 5035

    Article  CAS  Google Scholar 

  34. Hehre W J, Pople J A and Devaquet J P 1976J. Am. Chem. Soc. 98 664

    Article  CAS  Google Scholar 

  35. Hoffman R 1970Pure Appl. Chem. 24 567

    Google Scholar 

  36. Darigo A E, Pratt D W and Houk K N 1987J. Am. Chem. Soc. 109 6591

    Article  Google Scholar 

  37. Kundu T, Goodman L and Leszczynski J 1995J. Chem. Phys. 103 1523

    Article  CAS  Google Scholar 

  38. Goodman L, Kundu T and Leszczynski J 1996J. Phys. Chem. 100 2770

    Article  Google Scholar 

  39. Goodman L, Leszczynski J and Kundu T 1994J. Chem. Phys. 100 1274;

    Article  CAS  Google Scholar 

  40. Nino A, Munoz-Caro C and Moule D C 1994J. Phys. Chem. 98 1519

    Article  CAS  Google Scholar 

  41. Goodman L, Leszczynski J and Kundu T 1993J. Am. Chem. Soc. 115 11991

    Article  CAS  Google Scholar 

  42. Slater J C 1933J. Chem. Phys. 1 687

    Article  CAS  Google Scholar 

  43. Nelander B 1969J. Chem. Phys. 51 469

    Article  CAS  Google Scholar 

  44. Mitra A 1995Study of methyl torsional potential surface in acetaldehyde M Sc dissertation, Indian Inst. Technol., Bombay, Mumbai

    Google Scholar 

  45. Walker R, Richard E C and Weisshaar J C 1996J. Phys. Chem. 100 7333

    Article  Google Scholar 

  46. Eas ALL, Liu H, LimE C, Jensen P, Dechene I, Zgierski M Z, Siebrand Wand Bunker PR 2000J. Chem. Phys. 112 167

    Article  Google Scholar 

  47. Breen P J, Warren J A, Bernstein E R and Selmen J I 1987J. Chem. Phys. 87 1917

    Article  CAS  Google Scholar 

  48. Kreiner W A, Rudolph H D and Tan B T 1973J. Mol. Spectrosc. 48 86

    Article  CAS  Google Scholar 

  49. Amir-EbrahimV, Choplin A, Domaison J and Roussy G L 1981J. Mol. Spectrosc. 66 281

    Google Scholar 

  50. Liljefors T and Allinger N L 1985J. Comput. Chem. 6 478

    Article  CAS  Google Scholar 

  51. George P, Bock C W, Stezowski J J, Hildenbrand T and Glusker J P 1988J. Phys. Chem. 92 5656

    Article  CAS  Google Scholar 

  52. Lu K T, Weinhold F and Weisshaar J C 1995J. Chem. Phys. 102 6787

    Article  CAS  Google Scholar 

  53. Yam S and Spangler L H 1995J. Chem. Phys. 99 3047

    Article  Google Scholar 

  54. Siewert S S and Spangler L H 1995J. Phys. Chem. 99 9316

    Article  CAS  Google Scholar 

  55. Takazawa K, Fuzzi M and Ito M 1993J. Chem. Phys. 95 3205

    Article  Google Scholar 

  56. Okuyama K, Mikami N and Ito M 1985J. Phys. Chem. 89 5617

    Article  CAS  Google Scholar 

  57. Breen P J, Warren J A and Bernstein E R 1987J. Am. Chem. Soc. 109 3453

    Article  CAS  Google Scholar 

  58. Walker R A, Richard E C, Lu K T and Weisshaar J C 1995J. Phys. Chem. 99 12422

    Article  CAS  Google Scholar 

  59. Breen P J, Warren J, Bernstein E and Seeman J 1987J. Chem. Phys. 87 1927

    Article  CAS  Google Scholar 

  60. Sammeth D M, Siewert S S, Callis P R and Spangler L H 1992J. Phys. Chem. 96 5771

    Article  CAS  Google Scholar 

  61. Yam S and Spangler L H 1992J. Chem. Phys. 96 4106

    Article  Google Scholar 

  62. Disselkamp R, Lim H S and Bernstein E R 1992J. Chem. Phys. 97 7889

    Article  CAS  Google Scholar 

  63. Tomer J L, Spangeler L H and Pratt D N 1988J. Am. Chem. Soc. 110 1615

    Article  CAS  Google Scholar 

  64. Metzger B S and Spangler L H 1997J. Phys. Chem. 101 5431

    CAS  Google Scholar 

  65. Mizuno H, Okuyama K, Ebata T and Ito M 1987J. Phys. Chem. 91 5589

    Article  CAS  Google Scholar 

  66. Bandy R, Nash J and Zwier T 1991J. Chem. Phys. 95 2317

    Article  CAS  Google Scholar 

  67. Nakai H and Kawai M 2000J. Chem. Phys. 113 2168

    Article  CAS  Google Scholar 

  68. Pradhan B, Singh B P and Kundu T 2001Proceedings of National laser symposium (Indore, CAT) p. 309

  69. Pradhan B, Singh B P and Kundu T (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapanendu Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, T., Pradhan, B. & Singh, B.P. Origin of methyl torsional potential barrier — An overview. J Chem Sci 114, 623–638 (2002). https://doi.org/10.1007/BF02708856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708856

Keywords

Navigation