Skip to main content
Log in

Theoretical study of the boron-nitrogen (B-N) effects on electronic, optoelectronic, linear, and nonlinear optical properties of cyclo[2N]carbon series

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work focuses on the electronic, optoelectronic, and nonlinear optical properties of the cyclo[2N]carbon series (C10, C12, C14, C16, C18, C20, C22, and C24), and their derivative systems (C8BN, C10BN, C12BN, C14BN, C16BN, C18BN, C20BN, and C22BN) obtained by functionalizing each molecule of the series with the boron–nitrogen (B–N) binomial. The results were obtained from density functional theory and time-dependent density functional theory at the B3LYP-D3, CAM-B3LYP-D3, and ωB97XD/6–31 + G(d) levels of theory. The study found that the cumulative B–N effects on the molecules studied break the centrosymmetry of these molecules while, lowering the energy gap (from 3.11 eV for C18 to 2.80 eV for its derivative C16BN) making these molecules good materials for electronics. The C2N molecules (2N = 4n), namely C12, C16, C20, and C24, and their derivatives C10BN, C14BN, C18BN, and C22BN, are found to have high chemical softness (s), electronegativity (η), and electrophilic index (ω), making them useful materials in optoelectronics. An impressive impact of the B–N cumulative effect on the cyclo[2N]carbon’s series is that it significantly generates the first-order hyperpolarizability values. Like C24 of which β = 0.00 a.u. and its derivative C22BN of which β = 8812.77 a.u., value 8 times higher than that of paranitroaniline (β = 1072.44 a.u.), which is the reference compound in nonlinear optics, rendering these molecules interesting for linear and non-linear optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  4. Scott LT, Boorum MH, McMahon BJ et al (2002) A rational chemical synthesis of C60. Science 295:1500–1503. https://doi.org/10.1126/science.1068427

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann R, Kabanov AA, Golov AA, Proserpio DM (2016) Homo citans and carbon allotropes: for an ethics of citation. Angew Chemie Int Ed 55:10962–10976. https://doi.org/10.1002/anie.201600655

    Article  CAS  Google Scholar 

  6. Diederich F (1994) Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369:199–207. https://doi.org/10.1038/369199a0

    Article  CAS  Google Scholar 

  7. Kaiser K, Scriven LM, Schulz F et al (2019) An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365:1299–1301. https://doi.org/10.1126/science.aay1914

    Article  CAS  PubMed  Google Scholar 

  8. Parasuk V, Almlof J, Feyereisen MW (1991) The [18] all-carbon molecule: cumulene or polyacetylene? J Am Chem Soc 113:1049–1050

    Article  CAS  Google Scholar 

  9. Torelli T, Mitas L (2000) Electron correlation in C4N+2 carbon rings: aromatic versus dimerized structures. Phys Rev Lett 85:1702–1705. https://doi.org/10.1103/PhysRevLett.85.1702

    Article  CAS  PubMed  Google Scholar 

  10. Arulmozhiraja S, Ohno T (2008) CCSD calculations on C14, C18, and C22 carbon clusters. J Chem Phys. https://doi.org/10.1063/12838200

    Article  PubMed  Google Scholar 

  11. Diederich F, Rubin Y, Knobler CB et al (1989) All-carbon molecules: evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245:1088–1090. https://doi.org/10.1126/science.245.4922.1088

    Article  CAS  PubMed  Google Scholar 

  12. Diederich F, Kivala M (2010) All-carbon scaffolds by rational design. Adv Mater 22:803–812. https://doi.org/10.1002/adma.200902623

    Article  CAS  PubMed  Google Scholar 

  13. Shang L, Kang F, Gao W, Zhou Z (2022) On-surface synthesis of sp -carbon nanostructures. Nanomaterials 12:137

    Article  CAS  Google Scholar 

  14. Scriven LM, Kaiser K, Schulz F et al (2020) Synthesis of cyclo[18]carbon via debromination of C18Br 6. J Am Chem Soc 142:12921–12924. https://doi.org/10.1021/jacs.0c05033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pichierri F (2020) Boron-nitrogen analogues of cyclo[18]carbon. Chem Phys Lett 738:136860. https://doi.org/10.1016/j.cplett.2019.136860

    Article  CAS  Google Scholar 

  16. Stasyuk AJ, Stasyuk OA, Solà M, Voityuk AA (2020) cyclo[18]carbon: the smallest all-carbon electron acceptor. Chem Commun 56:352–355. https://doi.org/10.1039/c9cc08399e

    Article  CAS  Google Scholar 

  17. Heaton-Burgess T, Yang W (2010) Structural manifestation of the delocalization error of density functional approximations: C4N+2 rings and C20 bowl, cage, and ring isomers. J Chem Phys 132:10–15. https://doi.org/10.1063/1.3445266

    Article  CAS  Google Scholar 

  18. Lundberg M, Siegbahn PEM (2005) Quantifying the effects of the self-interaction error in DFT: When do the delocalized states appear? J Chem Phys. https://doi.org/10.1063/11926277

    Article  PubMed  Google Scholar 

  19. Zheng X, Liu M, Johnson ER et al (2012) Delocalization error of density-functional approximations: a distinct manifestation in hydrogen molecular chains. J Chem Phys. https://doi.org/10.1063/14768673

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity. Carbon N Y 165:461–467. https://doi.org/10.1016/j.carbon.2020.05.023

    Article  CAS  Google Scholar 

  21. Biglari Z, Fallah V (2020) Influence of BN-orientation pattern at spoke location of corannulene on electro-optical properties and aromaticity. J Mol Struct 1220:128730. https://doi.org/10.1016/j.molstruc.2020.128730

    Article  CAS  Google Scholar 

  22. Frisch MJEA (2009) Gaussian 09: IOps Reference. Gaussian Wallingford, CT, USA

    Google Scholar 

  23. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  24. Tchangnwa Nya F, Ejuh GW, Ndjaka JMB (2017) Theoretical study of optoelectronic and thermodynamic properties of molecule 4-[2-(2-N, N-dihydroxy amino thiophene) vinyl] benzanamine: influence of hydroxyl position. Mater Lett 202:89–95. https://doi.org/10.1016/j.matlet.2017.05.064

    Article  CAS  Google Scholar 

  25. Ejuh GW, Tchangnwa Nya F, Ottou Abe MT et al (2017) Electronic structure, physico–chemical, linear and non linear optical properties analysis of coronene, 6B-, 6N-, 3B3N- substituted C24H12 using RHF, B3LYP and wB97XD methods. Opt Quantum Electron. https://doi.org/10.1007/s11082-017-1221-2

    Article  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  29. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  PubMed  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametriza-tion of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104. https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  31. Aloumko B, Foadin CST, Ousmanou MB et al (2023) Enhancing the reactivity, electronic, linear and non-linear optical properties of C45H15-like carbon nanocone doped with titanium dioxide, boron, and nitrogen: DFT and TD-DFT study. Phys Scr 98:65916

    Article  Google Scholar 

  32. de Paul ZV, Fouegue ADT, Bouba MO et al (2023) Adsorption of juglone on pure and boron-doped C24 fullerene-like nano-cage: a density functional theory investigation. Comput Theor Chem 1222:114077

    Article  Google Scholar 

  33. Bouba MO, Tchangnwa Nya F, Malloum A et al (2021) DFT investigation of Percyanation effect of coronene molecule: comparative study with their Perhalogenated counterparts. Polym Bull. https://doi.org/10.1007/s00289-021-03967-5

    Article  Google Scholar 

  34. Liu Z, Lu T, Yuan A et al (2021) Remarkable size effect on photophysical and nonlinear optical properties of all-carboatomic rings, cyclo[18]carbon and Its analogues. Chem Asian J 16:2267–2271. https://doi.org/10.1002/asia.202100589

    Article  CAS  PubMed  Google Scholar 

  35. Damien C, Mveme D, Tchangnwa F et al (2021) A density functional theory (DFT) study of the doping effect on 4 -[2–(2–N, N–dihydroxy amino thiophene ) vinyl ] benzenamine. SN Appl Sci 3:1–11. https://doi.org/10.1007/s42452-021-04277-1

    Article  CAS  Google Scholar 

  36. Saranya G, Navamani K, Senthilkumar K (2014) A theoretical study on optical and charge transport properties of anthra-[1,2-b:4,3-b′:5,6-b″:8,7-bâ€́] tetrathiophene molecules. Chem Phys 433:48–59. https://doi.org/10.1016/j.chemphys.2014.01.020

    Article  CAS  Google Scholar 

  37. Kabé C, Nya FT, Ndjaka JM (2020) Influence of zinc and copper on the electronic, linear, and nonlinear optical properties of organometallic complexes with phenalenyl radical : a computational study. Struct Chem 32:835–845

    Article  Google Scholar 

  38. Lu T, Liu Z, Chen Q (2021) Materials science & engineering b comment on “ 18 and 12– member carbon rings ( cyclo [n ] carbons )–a density functional study.” Mater Sci Eng B 273:115425. https://doi.org/10.1016/j.mseb.2021.115425

    Article  CAS  Google Scholar 

  39. Liu Z, Lu T, Chen Q (2020) An sp-hybridized all-carboatomic ring, cyclo[18]carbon: Bonding character, electron delocalization, and aromaticity. Carbon N Y 165:468–475. https://doi.org/10.1016/j.carbon.2020.04.099

    Article  CAS  Google Scholar 

  40. Liu Z, Tian L, Chen Q (2021) Comment on “Theoretical investigation on bond and spectrum of cyclo[18]carbon (C18) with sp-hybridized.” J Mol Model. https://doi.org/10.1007/s00894-021-04665-9

    Article  PubMed  Google Scholar 

  41. Wang X, Liu Z, Wang J, Lu T, Xiong W, Yan X, Zhao M (2022) Graphical understanding of electron delocalization and aromatic characteristic of unusual cyclo [18] carbon precursor, C18Br6. Reference 41 is unpublished article, only preprint version

  42. Dai C, Chen D, Zhu J (2020) Achieving Adaptive Aromaticity in cyclo[10]carbon by screening cyclo[n]carbon (n=8−24). Chem Asian J 15:2187–2191. https://doi.org/10.1002/asia.202000528

    Article  CAS  PubMed  Google Scholar 

  43. Ejuh GW, Tchangnwa Nya F, Djongyang N, Ndjaka JMB (2020) Theoretical study on the electronic, optoelectronic, linear and non linear optical properties and UV–Vis spectrum of coronene and coronene substituted with chlorine. SN Appl Sci. https://doi.org/10.1007/s42452-020-3028-1

    Article  Google Scholar 

  44. Hussain R, Saeed M, Mehboob MY et al (2020) Density functional theory study of palladium cluster adsorption on a graphene support. RSC Adv 10:20595–20607. https://doi.org/10.1039/d0ra01059f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Domingo LR, Ríos-Gutiérrez M, Pérez P (2016) Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules. https://doi.org/10.3390/molecules21060748

    Article  PubMed  PubMed Central  Google Scholar 

  46. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  47. Zara Z, Iqbal J, Ayub K et al (2017) A comparative study of DFT calculated and experimental UV/Visible spectra for thirty carboline and carbazole based compounds. J Mol Struct 1149:282–298

    Article  CAS  Google Scholar 

  48. Kumar VS, Mary YS, Pradhan K et al (2020) Synthesis, spectral properties, chemical descriptors and light harvesting studies of a new bioactive azo imidazole compound. J Mol Struct 1199:127035. https://doi.org/10.1016/j.molstruc.2019.127035

    Article  CAS  Google Scholar 

  49. Foadin CST, Nya FT, Ejuh GW et al (2020) DFT study of the influence of impurities on the structural, electronic, optoelectronic, and nonlinear optical properties of graphene nanosheet functionalized by the carboxyl group –COOH. J Mol Model 26:1–12. https://doi.org/10.1007/s00894-020-04592-1

    Article  CAS  Google Scholar 

  50. Yibain Khokho EC, Tchangnwa Nya F, Malloum A, Conradie J (2022) Comparative study of electronic, optoelectronic, optical, and thermodynamic properties of two ovalene molecules and their derivatives functionalized with potassium and chlorine atoms. Springer, Berlin Heidelberg

    Google Scholar 

  51. Shi L, Zhou Z, Qu T et al (2020) Investigation on structural, relative stable, and electronic properties of binary AlnLin (N = 2–12) clusters through density functional theory. Medziagotyra 26:154–160. https://doi.org/10.5755/j01.ms.26.2.23558

    Article  Google Scholar 

  52. van Gisbergen SJA, Schipper PRT, Gritsenko OV et al (1999) Electric field dependence of the exchange-correlation potential in molecular chains. Phys Rev Lett 83:694–697. https://doi.org/10.1103/PhysRevLett.83.694

    Article  Google Scholar 

  53. Kang H, Ye J, Wang H et al (2021) DFT study of effect of substituents on second-order NLO response of novel BODIPY dyes. Theor Chem Acc 140:47

    Article  CAS  Google Scholar 

  54. Yamijala SSRKC, Mukhopadhyay M, Pati SK (2015) Linear and nonlinear optical properties of graphene quantum dots: a computational study. J Phys Chem C 119:12079–12087. https://doi.org/10.1021/acs.jpcc.5b03531

    Article  CAS  Google Scholar 

  55. Bharanidharan S, Myvizhi P (2018) Frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) surface of 2-(4-chlorophenyl)-1-((furan-2-yl) methyl)-4, 5-dimethyl-1H-imidazole using DFT method. Int J Pure Appl Math 119:6769–6777

    Google Scholar 

  56. BARUT CELEPCI D (2021) A Theoretical Study of 2-hydroxyethyl substituted NHC precursors containing ortho–, meta– and para– methylbenzyl: global reactivity descriptors and prediction of biological activities. J Inst Sci Technol 11:258–267. https://doi.org/10.21597/jist.756249

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Council of Scientific and Industrial Research (CSIR), India, for the financial support through Emeritus Professor scheme (Grant No. 21 (0582)/03/EMR-II) to Prof. A.N. Singh of the Physics Department, Bahamas Hindu University, India, which enabled him to purchase the Gaussian Software. We are most grateful to Emeritus Prof. A.N. Singh.

Author information

Authors and Affiliations

Authors

Contributions

Christine Yvette Ngui provided conceptualization, investigation, methodology, validation, formal analysis, and writing—original draft. Marius Bouba Ousmanou performed conceptualization, investigation, methodology, formal analysis, and writing—review and editing. Crevain Foadin Souop Tala prepared writing—review and editing. Fridolin Tchangnwa Nya analyzed conceptualization, investigation, methodology, formal analysis, writing—review and editing, and supervision.

Corresponding author

Correspondence to Fridolin Tchangnwa Nya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngui, C.Y., Ousmanou, M.B., Souop Tala Foadin, C. et al. Theoretical study of the boron-nitrogen (B-N) effects on electronic, optoelectronic, linear, and nonlinear optical properties of cyclo[2N]carbon series. Polym. Bull. (2024). https://doi.org/10.1007/s00289-024-05249-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00289-024-05249-2

Keywords

Navigation