Skip to main content
Log in

Theoretical Foundations of the Appearance of Drug Resistance in Soils

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Manufacture of many drugs is directly related to the cultivation of medicinal plants, and seeding with soil microorganisms occurs just at that stage. Microorganisms colonize plant roots and root hairs to form biofilms and symbioses, which induces changes of the phenotype reflected in variation of the growth parameters and specific gene expression. The ability of bacteria to form biofilms and of fungi and actinomycetes to form symbioses constitutes an essential pathogenicity factor. Analogous populations of microorganisms can be found in the gastrointenstinal tract of invertebrates, as well as of vertebrates and humans. Communities of microorganisms generate a common genetic system in the form of plasmids that are circular DNA molecules coding the behavior of biofilm and symbiosis members and determining their trophic, energetic, and other relations between each other and the outside. At all these stages, resistance of microorganisms to antibiotics, disinfectants, and synthetic compounds is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gabidova, A.E., Mezhdunar. Zh. Prikl. Fundament. Issled., 2017, no. 3 (1), p. 92.

    Google Scholar 

  2. Coenye, T. and Nelis, H.J., J. Microbiol. Methods, 2010, vol. 83, no. 2, p. 89.

    Article  CAS  PubMed  Google Scholar 

  3. Flemming, H.C. and Wingender, J., Nat. Rev. Microbiol., 2010, vol. 8, no. 9, p. 623.

    Article  CAS  PubMed  Google Scholar 

  4. Lyamin, A.V., Botkin, E.A., and Zhestkov, A.V., Klin. Mikrobiol. Antimikrob. Khimioter., 2012, no. 4, p. 268.

    Google Scholar 

  5. Tereshchenko, V.S., Izv. Samarsk. Nauch. Tsentra Ross. Akad. Nauk, 2015, vol.17, no. 5 (3), p. 917.

    Google Scholar 

  6. D’yachenko, A.G., Klin. Immunol., Allergol., Infektol., 2012, no. 4, p. 5.

    Google Scholar 

  7. Vorobei, S., Voronkova, A.S., and Vinnikov, A.I., Biol. Ekol., 2012, vol. 1, no. 20, p. 13–22.

    Google Scholar 

  8. Zvyagintsev, D.G., Bab’eva, I.P., and Zenova, G.M., Vestn. Mosk. Univ., Ser. 17: Pochvovedenie, 2005, Moscow: Mosk. Gos. Univ., 2005

    Google Scholar 

  9. Tikhonovich, I.A., Simbiozy rastenii i mikroorganizmov (Symbioses of Plants and Microorganisms), St. Petersburg: Sankt-Peterb. Gos. Univ., 2009.

    Google Scholar 

  10. Gabidova, A.E. and Galynkin, V.A., Russ. J. Gen. Chem., 2014, vol. 84, no. 13, p. 2650. doi https://doi.org/10.1134/S1070363214130246

    Article  CAS  Google Scholar 

  11. Striganova, B.R., Materialy XVI Vserossiiskogo soveshchaniya po pochvennoi zoologii (Proc. XVIth All-Russian Meet. on Soil Zoology), Striganova, B.R., Ed., Moscow: Tovarishchestvo Nauchnykh Izdanii KMK, 2011, p 153.

    Google Scholar 

  12. Fedorenko, V.A., Geneticheskie mekhanizmy ustoichivosti aktinomitsetov k aminoglikozidnym antibiotikam (Genetic Mechanisms of Actinomycete Resistance to Aminoglycoside Antibiotics), Leningrad: Mir Nauki i Kul’tury, 2009.

    Google Scholar 

  13. Provorov, N.A., Ekol. Genet., 2007, vol. 5, no. 1, p. 23.

    Google Scholar 

  14. Gabidova, A.E., Mezhdunar. Zh. Prikl. Fundament. Issled., 2016, no. 12 (7), p. 1307.

    Google Scholar 

  15. Dobrovol’skaya, T.G., Zvyagintsev, D.G., Chernov, I.Y., Golovchenko, A.V., Zenova, G.M., Lysak, L.V., Manucharova, N.A., Marfenina, O.E., Polyanskaya, L.M., Stepanov, A.L., and Umarov, M.M., Eurasian Soil Sci., 2015, vol. 48, no. 9, p. 959.

    Article  Google Scholar 

  16. Ellermeier, C.D., Hobbs, E.C., Gonzalez-Pastor, J.E., and Losick, R., Cell, 2006, vol. 124, no. 3, p. 549. doi https://doi.org/10.1016/j.cell.2005.11.041

    Article  CAS  PubMed  Google Scholar 

  17. Minushkin, O.N., Disbakterioz (disbioz) kishechnika: sovremennoe sostoyanie problemy, kompleksnaya diagnostika i lechebnaya korrektsiya (Intestinal Dysbiosis: Current State of the Problem, Combined Diagnostics, and Therapeutic Correction), Moscow: Uchebno-Nauchnyi Meditsinskii Tsentr, 2007.

    Google Scholar 

  18. Sumenkova, N.I., Katalog tipovykh ekzemplyarov nematod i akantotsefal Gel’mintologicheskogo muzeya RAN N.I. Sumenkova i dr. (Catalog of Typical Nematode and Acanthocephala Species of the Sumenkov Helminthologic Museum of the Russian Academy of Sciences), Moscow: Nauka, 2009.

    Google Scholar 

  19. Carraroa, N., Rivarda, N., Burrusa, V., and Ceccarelli, D., Front. Microbiol., 2017, vol. 7, no. 2, p. 1.

    Google Scholar 

  20. Dmitrienko, V.K., Nauki o biologicheskom mnogoobrazii: zoologiya bespozvonochnykh. Kurs lektsii (Biodiversity in Sciences: Invertebrate Zoology. A Course of Lectures), Krasnoyarsk, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Gabidova.

Additional information

Original Russian Text © A.E. Gabidova, V.A. Galynkin, 2018, published in Ekologicheskaya Khimiya, 2018, Vol. 27, No. 1, pp. 22–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabidova, A.E., Galynkin, V.A. Theoretical Foundations of the Appearance of Drug Resistance in Soils. Russ J Gen Chem 88, 2847–2853 (2018). https://doi.org/10.1134/S1070363218130042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218130042

Keywords

Navigation