Skip to main content

Antibiotics and Antibiotics Resistance Genes Dissemination in Soils

  • Chapter
  • First Online:
Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

Abstract

This chapter describes the dissemination of antibiotics and antibiotic resistance genes in soil. It starts with an overview of the current knowledge about the natural resistome in soil—mainly bacteria-producing antibiotics—and also the contribution of agriculture, animal husbandry and natural fertilization, and the use of water from the effluent to irrigate crop fields in dissemination of antibiotics in soil. The aspects related to the degradation of antibiotics in the environment and their dependence on environmental conditions are also discussed. Attention has also been paid to the complexity of the soil microbes in the biofilms community and different answers to subinhibitory concentrations of various antibiotics like the SOS response, biofilm formation, or changes in primary metabolism. The next part of this chapter focuses on antibiotic-resistant bacteria in soil and their dissemination. There are numerous examples of intrinsically resistant bacteria and also mechanisms of the acquisition or development of resistance to various antibiotics. Also emphasized is the role of antibiotic pressure leading to higher levels of resistance and the acquisition and exchange of genetic material also that from pathogenic bacteria introduced into the environment from medical settings, municipal wastewater systems, and animal husbandry facilities. The last part is dedicated to antibiotic resistance genes and the mechanism of their transfer and dissemination. This phenomenon is related to horizontal (or lateral) gene transfer through mobile genetic elements. The issue of dissemination of anthropogenically associated antibiotic resistance genes to soil is also discussed. Finally, a holistic model for understanding antibiotic resistance gene dynamics in soil is proposed.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aga DS, Lenczewski M, Snow D, Sallach JB, Muurinen J, Wallace JS (2016) Challenges in the measurement of antibiotics and in evaluating their impacts in the agroecosystems: a critical review. J Environ Qual 45(2):407–419. doi:10.2134/jeq2015.07.0393

    Article  CAS  PubMed  Google Scholar 

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3:243–251

    Article  CAS  PubMed  Google Scholar 

  • Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259

    Article  CAS  PubMed  Google Scholar 

  • Allen CA, Babakhani F, Sears P, Nguyen L, Sorg JA (2013) Both fidaxomicin and vancomycin inhibit outgrowth of Clostridium difficile spores. Antimicrob Agents Chemother 57(1):664–667. doi:10.1128/AAC.01611-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  CAS  PubMed  Google Scholar 

  • Aminov R, Mackie RI (2007) Evolution and ecology of antibiotic resistance genes. FEMS Microbiol Lett 271:147–161

    Article  CAS  PubMed  Google Scholar 

  • Anderson DI, Hughes D (2012) Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist Updat 15(3):162–72. doi:10.1016/j.drup.2012.03.005

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2319:260–271

    Article  CAS  Google Scholar 

  • Anjum R, Krakat N (2015) A review: improper antibiotic utilization evokes the dissemination of resistances in biotic environments—a high risk of health hazards. Pharm Anal Acta 6:454. doi:10.4172/2153-2435.1000454

    Article  Google Scholar 

  • Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Babakhani F, Gomez A, Robert N, Sears P (2011) Killing kinetics of fidaxomicin and its major metabolite OP-1118 against Clostridium difficile. J Med Microbiol 60:1213–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2:125–131

    Google Scholar 

  • Baquero F, Tedim AP, Coque TM (2013) Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 4:15. doi:10.3389/fmicb.2013.00015

    Article  PubMed  PubMed Central  Google Scholar 

  • Bean TG, Boxall AB, Lane J, Herborn KA, Pietravalle S, Arnold KE (2014) Behavioural and physiological responses of birds to environmentally relevant concentrations of an antidepressant. Philos Trans R Soc Lond Ser B Biol Sci 369:20130575. doi:10.1098/rstb.2013.0575

    Article  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70(8):2276–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nature 13:310–317

    CAS  Google Scholar 

  • Berger CN, Sodha SV, Shaw RK, Griffin PM, Pink D, Hand P, Frankel G (2010) Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397

    Article  PubMed  Google Scholar 

  • Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 5:28564. doi:10.3402/iee.v5.28564

    Article  PubMed  Google Scholar 

  • Bernier SP, Surette MG (2013) Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 4:20. doi:10.3389/fmicb.2013.00020

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953. doi:10.1371/journal.pone.0034953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51. doi:10.1038/nrmicro3380

    Article  CAS  PubMed  Google Scholar 

  • Blazquez J, Couce A, Rodriguez-Beltran J, Rodriguez-Rojas A (2012) Antimicrobials as promoters of genetic variation. Curr Opin Microbiol 15:561–569

    Article  CAS  PubMed  Google Scholar 

  • Brameyer S, Kresovic D, Bode HB, Heerman R (2015) Dialkylresorcinols as bacterial signaling molecules. PNAS 112(2):572–577. doi:10.1073/pnas.1417685112

    Article  CAS  PubMed  Google Scholar 

  • Brötz-Oesterhelt H, Brunner NA (2008) How many modes of action should an antibiotic have? Curr Opin Pharmacol 8:564–573

    Article  PubMed  CAS  Google Scholar 

  • Buscot F, Varma A (eds) (2005) Microorganisms in soils: roles in genesis and functions. Springer, Berlin

    Google Scholar 

  • Cafaro MJ, Currie CR (2005) Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol 51(6):441–446

    Article  CAS  PubMed  Google Scholar 

  • Cantas L, Shah SQ, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Bürgmann H, Sørum H (2013) A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96. doi:10.3389/fmicb.2013.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canton R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15:20–25

    Article  CAS  PubMed  Google Scholar 

  • Cevheri C (2012) Maize growth promotion of bacteria isolates from semi-arid region of turkey. J Food Agric Environ 10:1269–1272

    Google Scholar 

  • Chopra I, Brennan P (1998) Molecular action of antimycobacterial agents. Tuber Lung Dis 78:89–98

    Article  Google Scholar 

  • D’Costa VM, Mcgrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311:374–377

    Article  PubMed  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10:481–489

    Article  PubMed  CAS  Google Scholar 

  • D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  CAS  Google Scholar 

  • Dantas G, Sommer MOA, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320:100–103

    Article  CAS  PubMed  Google Scholar 

  • Davies J (1987) Antibiotic-resistance genes—ecology, transfer, and expression—Levy, SB, Novick, RP. Nature 329:212–212

    Article  Google Scholar 

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15(1):5–10. doi:10.1016/j.cbpa.2010.11.001

  • Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microb Mol Biol Rev 74:417–533

    Article  CAS  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9(5):445–453. doi:10.1016/j.mib.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • De La Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133

    Article  PubMed  Google Scholar 

  • De La Torre A, Iglesias I, Carballo M, Ramírez P, Muñoz MJ (2012) An approach for mapping the vulnerability of European Union Soils to Antibiotic Contamination. Sci Total Environ 414:672–679

    Article  PubMed  CAS  Google Scholar 

  • Derewacz DK, Goodwin CR, McNees CR, McLean JA, Bachmann BO (2013) Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. Proc Natl Acad Sci USA 110:2336–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding CH, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941

    Article  CAS  PubMed  Google Scholar 

  • Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, Mcmanus PS, Handelsman J (2010) Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl Environ Microbiol 76:4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dungait JA, Cardenas LM, Blackwell MS, Wu L, Withers PJ, Chadwick DR, Bol R, Murray PJ, Macdonald AJ, Whitmore AP, Goulding KW (2012) Advances in the understanding of nutrient dynamics and management in UK agriculture. Sci Total Environ 434:39–50. doi:10.1016/j.scitotenv.2012.04.029

    Article  CAS  PubMed  Google Scholar 

  • Durso LM, Wedin DA, Gilley JE, Miller DN, Marx DB (2016) Assessment of selected antibiotic resistances in ungrazed native Nebraska prairie soils. J Environ Qual 45(2):454–462

    Article  CAS  PubMed  Google Scholar 

  • Farmer JJ, Fanning GR, Huntley-Carter GP, Holmes B, Hickman FW, Richard C, Brenner DJ (1981) Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol 13(5):919–933

    PubMed  PubMed Central  Google Scholar 

  • FDA (2015) 2013 summary report on antimicrobials sold or distributed for use in food-producing animals. FDA, Department of Health and Human Services, Center for Veterinary Medicine, Silver Springs, MD

    Google Scholar 

  • Fevre C, Jbel M, Passet V, Weill FX, Grimont PA, Brisse S (2005) Six groups of the OXY β-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob Agents Chemother 49:3453–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fick H, Soderstrom H, Lindberg RH, Phan C, Tysklind M, Larsson DGJ (2009) Contamination of surface, ground, and drinking water from pharmaceutical production. Environ Toxicol Chem 28:2522–2527

    Article  CAS  PubMed  Google Scholar 

  • Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509(7502):612–616. doi:10.1038/nature13377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  PubMed  Google Scholar 

  • Garau G, Di Guilmi AM, Hall BG (2005) Structure-based phylogeny of the metallo-beta-lactamases. Antimicrob Agents Chemother 49:2778–2784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatica J, Cytryn E (2013) Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. Environ Sci Pollut Res Int 20(6):3529–3538. doi:10.1007/s11356-013-1505-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatica J, Yang K, Pagaling E, Jurkevitch E, Yan T, Cytryn E (2015) Resistance of undisturbed soil microbiomes to ceftriaxone indicates extended spectrum β-lactamase activity. Front Microbiol 6:1233. doi:10.3389/fmicb.2015.01233

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatica J, Tripathi V, Green SJ, Manaia CM, Berendonk T, Cacace D, Merlin C, Kreuzinger N, Schwartz T, Fatta-Kassinos D (2016) High throughput analysis of integron gene cassettes in wastewater environments. Environ Sci Technol 50(21):11825–11836

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Jansson JK, Knight R (2014) The Earth microbiome project: successes and aspirations. BMC Biol. doi:10.1196/s12915-014-0069-1

  • Gillings MR (2013) Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 4:4. doi:10.3389/fmicb.2013.00004

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh E-B, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci U S A 99:17025–17030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gootz TD (2010) The global problem of antibiotic resistance. Crit Rev Immunol 30:79–93

    Article  CAS  PubMed  Google Scholar 

  • Graham DW, Knapp CW, Christensen BT, Mccluskey S, Dolfing J (2016) Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci Rep 6:21550. doi:10.1038/srep21550lk

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall BG, Barlow M (2004) Evolution of the serine beta-lactamases: past, present and future. Drug Resist Updat 7:111–123

    Article  CAS  PubMed  Google Scholar 

  • Handwerger D, Pucci MJ, Volk KJ, Liu J, Lee MS (1994) Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic precursors that terminate in lactate. J Bacteriol 176(1):260–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggie SP, Williams P, Camaara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  CAS  Google Scholar 

  • Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A (2002) Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46(9):3045–3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jechalke S, Kopmann C, Rosendahl I, Groeneweg J, Weichelt V, Krogerrecklenfort E, Brandes N, Nordwig M, Ding GC, Siemens J, Heuer H, Smalla K (2013) Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato S, Shindo K, Kawai H, Matsuoka M, Mochizuki J (1993) Studies on free radical scavenging substances from microorganisms. III. Isolation and structural elucidation of a novel free radical scavenger resorstatin. J Antibiot (Tokyo) 46:1024–1026

    Article  CAS  Google Scholar 

  • Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health B Crit Rev 10:559–573

    Article  CAS  PubMed  Google Scholar 

  • Kleineidam K, Sharma S, Kotzerke A, Heuer H, Thiele-Bruhn S, Smalla K, Wilke BM, Schloter M (2010) Effect of sulfadiazine on abundance and diversity of denitrifying bacteria by determining nirK and nirS genes in two arable soils. Microb Ecol 60:703–707. doi:10.1007/s00248-010-9691-9

    Article  CAS  PubMed  Google Scholar 

  • Kloesges T, Popa O, Martin W, Dagan T (2011) Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 28(2):1057–1074. doi:10.1093/molbev/msq297

    Article  CAS  PubMed  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PA, Graham DW (2010) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  CAS  PubMed  Google Scholar 

  • Knapp CW, Mccluskey SM, Singh BK, Campbell CD, Hudson G, Graham DW (2011) Antibiotic resistance gene abundances correlate with metal and geochemical conditions in archived Scottish soils. PLoS One 6:e27300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krawczyk-Balska A, Markiewicz Z (2016) The intrinsic cephalosporin resistome of Listeria monocytogenes in the context of stress response, gene regulation, pathogenesis and therapeutics. J Appl Microbiol 120(2):251–265

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54:311–320

    Article  PubMed  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment. A review Part I. Chemosphere 75:417–434

    Article  PubMed  CAS  Google Scholar 

  • LaPara TM, Burch TR, McNamara PJ, Tan DT, Yan M, Eichmiller JJ (2011) Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior harbor. Environ Sci Technol 45:9543–9549. doi:10.1021/es202775r

    Article  CAS  PubMed  Google Scholar 

  • Lathers CM (2001) Role of veterinary medicine in public health: antibiotic use in food animals and humans and the effect on evolution of antibacterial resistance. J Clin Pharmacol 41:595–599

    Article  CAS  PubMed  Google Scholar 

  • Lebreton F, Manson AL, Saavedra JT, Straub TJ, Earl AM, Gilmore MS (2017) Tracing the enterococci from paleozoic origins to the hospital. Cell 169(5):849–861. doi:10.1016/j.cell.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 12:S122–S129

    Article  CAS  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Pop M (2009) ARDB—Antibiotic Resistance Genes Database. Nucleic Acids Res 37:D443–D447

    Article  CAS  PubMed  Google Scholar 

  • Majewsky M, Wagner D, Delay M, Brase S, Yargeaua V, Horn H (2014) Antibacterial activity of sulfamethoxazole transformation products (TPs): general relevance for sulfonamide TPs modified at the parA position. Chem Res Toxicol 27:1821–1828. doi:10.1021/tx500267x

    Article  CAS  PubMed  Google Scholar 

  • Manaia CM, Novo A, Coelho B, Nunes OC (2010) Ciprofloxacin resistance in domestic wastewater treatment plants. Water Air Soil Pollut 208:335–343

    Article  CAS  Google Scholar 

  • Mannanov RN, Sattarova RK (2001) Antibiotics produced by Bacillus bacteria. Chem Nat Compd 37:117

    Article  CAS  Google Scholar 

  • Markiewicz Z, Kwiatkowski Z (2006) Bacteria, antibiotics, drug resistance. Polish Scientific Publishers, PWN, Warsaw

    Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24(4):718–733. doi:10.1128/CMR.00002-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367

    Article  PubMed  CAS  Google Scholar 

  • Martínez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  PubMed  CAS  Google Scholar 

  • Martínez JL, Baquero F (2014) Emergence and spread of antibiotic resistance: setting a parameter space. Ups J Med Sci 119:68–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martinez-Solano L, Sanchez MB (2009) A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65

    Article  PubMed  CAS  Google Scholar 

  • Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123

    Article  PubMed  CAS  Google Scholar 

  • McGarvey KM, Queitsch K, Fields S (2012) Wide variation in antibiotic resistance proteins identified by functional metagenomic screening of a soil DNA library. Appl Environ Microbiol 78:1708–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLain JE, Williams CF (2014) Sustainability of water reclamations: long-term recharge with reclaimed wastewater does not enhance antibiotic resistance in sediment bacteria. Sustainability 6:1313–1327. doi:10.3390/su6031313

    Article  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Annu Rev Phytopathol 40:443–465

    Article  CAS  PubMed  Google Scholar 

  • Miller JH, Novak JT, Knocke WR, Pruden A (2016) Survival of antibiotic resistant bacteria and horizontal gene transfer control antibiotic resistance gene content in anaerobic digesters. Front Microbiol 7:263. doi:10.3389/fmicb.2016.00263

    PubMed  PubMed Central  Google Scholar 

  • Mueller A, Wenzel M, Strahl H, Saaki TN, Kohl B, Siersma T, Bandow JE, Sahi HG, Schneider T, Hamoen LW (2016) Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc Natl Acad Sci USA pii:201611173

    Google Scholar 

  • Munir M, Xagoraraki I (2011) Levels of antibiotic resistance genes in manure, biosolids, and fertilized soil. J Environ Qual 40:248–255. doi:10.2134/jeq2010.0209

    Article  CAS  PubMed  Google Scholar 

  • Munir M, Wong K, Xagoraraki I (2011) Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res 45:681–693. doi:10.1016/j.watres.2010.08.033

    Article  CAS  PubMed  Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2). doi:10.1128/microbiolspec.VMBF-0016-2015

  • Muurinen J, Stedtfeld RD, Karkman A, Pärnänen K, Tiedje JM, Virta MP (2017) Influence of manure application on the environmental resistome under Finnish agricultural practice with restricted antibiotic use. Environ Sci Technol. doi:10.1021/acs.est.7b00551

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • National Research Council (1980) National Research Council (US) Committee to Study the Human Health Effects of Subtherapeutic Antibiotic Use in Animal Feeds. Washington (DC): National Academies Press (US).

    Google Scholar 

  • Neeno-Eckwall EC, Kinkel LL, Schottel JL (2001) Competition and antibiosis in the biological control of potato scab. Can J Microbiol 47(4):332–340

    Article  CAS  PubMed  Google Scholar 

  • Negreanu Y, Pasternak Z, Jurkevitch E, Cytryn E (2012) Impact of treated wastewater irrigation on antibiotic resistance in agricultural soils. Environ Sci Technol 46:4800–4808

    Article  CAS  PubMed  Google Scholar 

  • Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P (2014) Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol 24:1096–1100

    Article  CAS  PubMed  Google Scholar 

  • Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P et al (2016) Back to the future of soil metagenomics. Front Microbiol. doi:10.3389/fmicb.2016.00073

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD (2016) A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Comm. doi:10.1038/ncomms13803

  • Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, Desai MM (2015) Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. doi:10.1371/journal.pone.0069533

  • Perry JA, Wright GD (2013) The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front Microbiol 4:138. doi:10.3389/fmicb.2013.00138

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry JA, Westman EL, Wright GD (2014) The antibiotic resistome: what’s new? Curr Opin Microbiol. doi:10.1016/j.mib.2014.09.002

  • Pham VH, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30:475–484

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska M, Popowska M (2014) The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. Ann Microbiol 64:921–934

    Article  CAS  Google Scholar 

  • Piotrowska M, Popowska M (2015) Insight into the mobilome of Aeromonas strains. Front Microbiol 6:494. doi:10.3389/fmicb.2015.00494

    Article  PubMed  PubMed Central  Google Scholar 

  • Piotrowska M, Przygodzińska D, Matyjewicz K, Popowska M (2017) Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front Microbiol 8:863. doi:10.3389/fmicb.2017.00863

    Article  PubMed  PubMed Central  Google Scholar 

  • Poirel L, Rodrigues-Martinez J-M, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistant determinant QnrA. Antimicrob Agents Chemother 49(8):3523–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popowska M, Krawczyk-Balska A (2013) Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol 4:44. doi:10.3389/fmicb.2013.00044

    Article  PubMed  PubMed Central  Google Scholar 

  • Popowska M, Miernik A, Rzeczycka M, Łopaciuk A (2010) The impact of environmental contamination with antibiotics on levels of resistance in soil bacteria. J Environ Qual 39:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Popowska M, Rzeczycka M, Miernik A, Krawczyk-Balska A, Walsh F, Duffy B (2012) Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrob Agents Chemother 56:1434–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Procópio RE, Silva IR, Martins MK, Azevedo JL, Araújo JM (2012) Antibiotics produced by Streptomyces. Braz J Infect Dis 16:466–471

    Article  PubMed  Google Scholar 

  • Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, Visca P, Leoni L, Cámara M, Williams P (2016) Unravelling the genome wide contributions of specific 2-alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog 2(11):e1006029. doi:10.1371/journal.ppat.1006029

    Article  CAS  Google Scholar 

  • Randall CP, Mariner KR, Chopra I, O’Neill AJ (2013) The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob Agents Chemother 57(1):637–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riesenfeld CS, Goodman RM, Handelsman J (2004) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989

    Article  CAS  PubMed  Google Scholar 

  • Sales of veterinary antimicrobial agents in 29 European countries in 2014. Sixth ESVAC report. www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500214217

  • Santiago-Rodriguez TM, Fornaciari G, Luciani S, Dowd SE, Toranzos GA, Marota I, Cano RJ (2015) Gut microbiome of an 11th century A.D. Pre-Columbian Andean Mummy. PLoS One. doi:10.1371/journal.pone.0138135

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  • Seiler C, Berendonk TU (2012) Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 3:399. doi:10.3389/fmicb.2012.00399

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen D, Van Der Auwera G, Rogers L, Thomas CM, Brown CJ, Top EM (2011) Broad-host-range plasmids from agricultural soils have IncP-1backbones with diverse accessory genes. Appl Environ Microbiol 77:7975–7983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Chattopadhyay MK, Grossart HP (2013) The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. doi:10.3389/fmicb.2013.00047

  • Shtienberg D, Zilberstaine M, Oppenheim D, Herzog Z, Manulis S, Shwartz H, Kritzman G (2001) Efficacy of oxolinic acid and other bactericides in suppression of Erwinia amylovora in pear orchards in Israel. Phytoparasitica 29:143–154

    Article  CAS  Google Scholar 

  • Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, Moritz ED, Capuano AW, Herwaldt LA, Diekema DJ (2009) Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in Midwestern U.S. swine and swine workers. PLoS One 4:e4258

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee JH, Lee SH (2005) Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). J Microbiol 43:172–178

    CAS  PubMed  Google Scholar 

  • Stockwell VO, Duffy B (2012) Use of antibiotics in plant agriculture. Rev Sci Tech 31:199–210

    Article  CAS  PubMed  Google Scholar 

  • Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35:790–819

    Article  CAS  PubMed  Google Scholar 

  • Su JQ, Wei B, Xu CY, Qiao M, Zhu YG (2014) Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. Environ Int. doi:10.1016/j.envint.2013.12.010

  • Swenson JM, Facklam RR, Thornsberry C (1990) Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrob Agents Chemother 34(4):543–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaker M, Spanogiannopoulos P, Wright GD (2010) The tetracycline resistome. Cell Mol Life Sci 67:419–431

    Article  CAS  PubMed  Google Scholar 

  • Thanner S, Drissner D, Walsh F (2016) Antimicrobial resistance in agriculture. mBio 7. doi:10.1128/mBio.02227-15

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–167

    Article  CAS  Google Scholar 

  • Tsui WHW, Yim G, Wang HH, McClure JE, Surette MG, Davies J (2004) Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chem Biol 11:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci USA 111:15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 109:1159–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, van Elsas JD, Bailey MJ, Renaud N, Philippot L (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252–253

    Article  CAS  Google Scholar 

  • Wachino J, Yoshida H, Yamane K, Suzuki S, Matsui M, Yamagishi T, Tsutsui A, Konda T, Shibayama K, Arakawa Y (2011) SMB-1, a novel subclass B3 metallo-β-lactamase, associated with ISCR1 and a class 1 integron, from a carbapenem-resistant Serratia marcescens clinical isolate. Antimicrob Agents Chemother 55:5143–5149. doi:10.1128/AAC.05045-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh F (2013) The multiple role of antibiotics an antibiotic resistance in nature. Front Microbiol 4:255–259

    PubMed  PubMed Central  Google Scholar 

  • Wang F, Stedtfeld RD, Kim O-S, Chai B, Yang L, Stedtfeld TM, Hong SG, Kim D, Lim HS, Hashsham SA (2016) Influence of soil characteristics and proximity to Antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol 50:12621–12629

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33:15–23

    Article  CAS  PubMed  Google Scholar 

  • Wholey WY, Kochan TJ, Storck DN, Dawid S (2016) Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog. doi:10.1371/journal.ppat.1005413

  • Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM, McLain JE, Singer RS, Snow DD, Zilles JL (2016) Antibiotics and antibiotic resistance in agroecosystems: state of the science. J Environ Qual 45(2):394–406. doi:10.2134/jeq2015.07.0336

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2014) Antimicrobial resistance: global report on surveillance. http://www.who.int/antimicrobial-resistance/publications/en/

  • World Health Organization (2015) Global action plan on antimicrobial resistance. http://www.wpro.who.int/entity/drug_resistance/resources/global_action_plan_eng.pdf

  • World Health Organization (2016) Antimicrobial resistance fact sheet. http://www.who.int/mediacentre/factsheets/fs194/en/

  • World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/

  • Wright GD (2010) Antibiotic resistance in environment: a link to the clinic? Curr Opin Microbiol 13:589–594

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci U S A 109:633–638. doi:10.1073/pnas.1113992109

    Article  CAS  PubMed  Google Scholar 

  • Xie W-Y, Mcgrath SP, Su JQ, Hirsch PR, Clark IM, Shen Q, Zhu Y-G, Zhao F-J (2016) Long-term impact of field applications of sewage sludge on soil antibiotic resistome. Environ Sci Technol 50:12602–12611

    Article  CAS  PubMed  Google Scholar 

  • Yeom JR, Su Y, Kim CG (2017) Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria. Chemosphere 182:771–780

    Article  CAS  PubMed  Google Scholar 

  • Yim G, Wang H, Davies J (2006) The truth about antibiotics. Int J Med Microbiol 296:163–170

    Article  CAS  PubMed  Google Scholar 

  • Yim G, Wang H, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Ser B Biol Sci 362:1195–1200

    Article  CAS  Google Scholar 

  • Yim G, McClure J, Surette MG, Davies JE (2011) Modulation of Salmonella gene expression by subinhibitory concentrations of quinolones. J Antibiot (Tokyo) 64:73–78

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6:e26041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Popowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cytryn, E., Markiewicz, Z., Popowska, M. (2017). Antibiotics and Antibiotics Resistance Genes Dissemination in Soils. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_9

Download citation

Publish with us

Policies and ethics