Skip to main content
Log in

Photoelectrochromic Organic Systems

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of photochromic compounds from the classes of diarylethenes, fulgides, quinones, spiropyrans, and dihydropyrenes exhibiting photoelectrochromic properties were analyzed for the first time. It was demonstrated that, depending on the structure and on the nature of the substituents, these compounds can exhibit electrochromic transformations under reversible oxidation of both the initial and photoinduced forms. Photochromic and electrochromic properties displayed by a number of organic compounds make them promising candidates for development of new dual-mode photo- and electrocontrolled switches for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Browne, W.R., de Jong, J.J.D., Kudernac, T., Walko, M., Lucas, L.N., Uchida, K., van Esch, J.H., and Feringa, B.L., Chem. Eur. J. 2005, vol. 11, p. 6414. doi https://doi.org/10.1002/chem.200500162

    Article  CAS  PubMed  Google Scholar 

  2. Browne, W.R., de Jong, J.J.D., Kudernac, T., Walko, M., Lucas, L.N., Uchida, K., van Esch, J.H., and Feringa, B.L., Chem. Eur. J. 2005, vol. 11, p. 6430. doi https://doi.org/10.1002/chem.200500163

    Article  CAS  PubMed  Google Scholar 

  3. Guirado, G., Coudret, C., Hliwa, M., and Launay, J.-P., J. Phys. Chem. B, 2005, vol. 109, p. 17445. doi https://doi.org/10.1021/jp052459r

    Article  CAS  PubMed  Google Scholar 

  4. Coudret, C., Guirado, G., Hortholary, C., Launay, J.-P., Battaglini, N., Klein, H., and Dumas, P., Mol. Cryst. Liq. Cryst. 2005, vol. 431, no. 1, p. 501. doi https://doi.org/10.1080/15421400590947225

    Article  CAS  Google Scholar 

  5. Lee, S., You, Y., Ohkubo, K., Fukuzumi, S., and Nam, W., Org. Lett. 2012, vol. 14, no. 9, p. 2238. doi https://doi.org/10.1021/ol300604n

    Article  CAS  PubMed  Google Scholar 

  6. Matsuda, K., Yokojima, S., Moriyama, Y., Nakamura, S., and Irie, M., Chem. Lett. 2006, vol. 35, p. 900.

    Article  CAS  Google Scholar 

  7. Yokojima, S., Matsuda, K., Irie, M., Murakami, A., Kobayashi, T., and Nakumura, S., J. Phys. Chem. A, 2006, vol. 110, p. 8137. doi https://doi.org/10.1021/jp060648j

    Article  CAS  PubMed  Google Scholar 

  8. Peters, A. and Branda, N., J. Am. Chem. Soc., 2003, vol. 125, p. 3404. doi https://doi.org/10.1021/ja028764x

    Article  CAS  PubMed  Google Scholar 

  9. Saika, T., Irie, M., and Shimidzuc, T., J. Chem. Soc. Chem. Commun., 1994, p. 2123.

    Google Scholar 

  10. Kawai, S.H., Gilat, S.L., and Lehn, J.-M., J. Chem. Soc. Chem. Commun., 1994, p. 1011.

    Google Scholar 

  11. Kawai, S.H., Gilat, S.L., Ponsinet, R., and Lehn, J.-M., Chem. Eur. J. 1995, vol. 1, no. 5, p. 285.

    Article  CAS  Google Scholar 

  12. He, B. and Wenger, O.S., J. Am. Chem. Soc., 2011, vol. 133, p. 17027. doi https://doi.org/10.1021/ja207025x

    Article  CAS  PubMed  Google Scholar 

  13. Kawai, T., Koshido, T., Nakazono, M., and Yoshino, K., Chem. Lett. 1993, p. 697.

    Google Scholar 

  14. Irie, M., Jpn. J. Appl. Phys. 1989, vol. 28 (Suppl. 28-3), p. 215.

  15. Koshido, T., Kawai, T., and Yoshino, K., J. Phys. Chem., 1995, vol. 99, p. 6110.

    Article  CAS  Google Scholar 

  16. Xie, N. and Chen, Y., New J. Chem. 2006, vol. 30, p. 1595. doi https://doi.org/10.1039/b609156c

    Article  CAS  Google Scholar 

  17. Ikeda, H., Sakai, A., Namai, H., Kawabe, A., and Mizuno, K., Tetrahedron Lett. 2007, vol. 48, p. 8338. doi https://doi.org/10.1016/j.tetlet.2007.09.100

    Article  CAS  Google Scholar 

  18. Algi, M.P., Cihaner, A., and Algi, F., Tetrahedron 2014, vol. 70, p. 5064. doi https://doi.org/10.1016/j.tet.2014.06.005

    Article  CAS  Google Scholar 

  19. Moriyama, Y., Matsuda, K., Tamafuji, N., Irie, S., and Irie, M., Org. Lett. 2005, vol. 7, p. 3315. doi https://doi.org/10.1021/ol051149o

    Article  CAS  PubMed  Google Scholar 

  20. Kwon, T. and Kim, E., Curr. Appl. Phys. 2008, vol. 8, p. 739. doi https://doi.org/10.1016/j.cap.2007.04.057

    Article  Google Scholar 

  21. Peters, A. and Branda, N., Chem. Commun. 2003, vol. 9, p. 954. doi https://doi.org/10.1021/ja803714p

    Article  CAS  Google Scholar 

  22. Areephong, J., Kudernac, T., de Jong, J.J.D., Carroll, G.T., Pantorott, D., Hjelm, J., Browne, W.R., and Feringa, B.L., J. Am. Chem. Soc., 2008, vol. 130, p. 12850. doi https://doi.org/10.1021/ja803714p

    Article  CAS  PubMed  Google Scholar 

  23. Staykov, A., Areephong, J., Browne, W.R., Feringa, B.L., and Yoshizawa, K., ACS Anon., 2011, vol. 5, p. 1165. doi https://doi.org/10.1021/nn102806z

    CAS  Google Scholar 

  24. Tsivgoulis, G.M. and Lehn, J.-M., Chem. Eur. J. 1996, vol. 2, no. 11, p. 1399.

    Article  CAS  Google Scholar 

  25. Gilat, S. L., Kawai, S. H., and Lehn, J.-M., J. Chem. Soc. Chem. Commun., 1993, p. 1439.

    Google Scholar 

  26. Gilat, S.L., Kawai, S.H., and Lehn, J.-M., Chem. Eur. J. 1995, vol. 1, no. 5, p. 275.

    Article  CAS  Google Scholar 

  27. Gorodetsky, B., Samachetty, H.D., Donkers, R.L., Workentin, M.S., and Branda, N.R., Angew. Chem. Int. Ed. 2004, vol. 43, p. 2812. doi https://doi.org/10.1002/anie.200353029

    Article  CAS  Google Scholar 

  28. Gorodetsky, B. and Branda, N.R., Adv. Func. Mater. 2007, vol. 17, p. 786. doi https://doi.org/10.1002/adfm.200600902

    Article  CAS  Google Scholar 

  29. Leaustic, A., Mallart, E., Maurel, F., Midelton, S., Guillot, R., Metivier, R., Nakatani, K., and Yu, P., Chem. Eur. J. 2011, vol. 17, p. 2246. doi https://doi.org/10.1002/chem.201002451

    Article  CAS  PubMed  Google Scholar 

  30. Endtner, J.M., Effenberger, F., Hartschuh, A., and Port, H., J. Am. Chem. Soc., 2000, vol. 122, p. 3037. doi https://doi.org/10.1021/ja9938736

    Article  CAS  Google Scholar 

  31. Guirado, G., Coudret, C., and Launay, J.P., J. Phys. Chem. C, 2007, vol. 111, p. 2770. doi https://doi.org/10.1021/jp066571g

    Article  CAS  Google Scholar 

  32. Lin, Y., Yuan J.J., Hu, M., Yin, J., Jin, S., and Liu, S.H., Organometallics 2009, vol. 28, p. 6402.

    Article  CAS  Google Scholar 

  33. Fraysse, S., Coudret, C., and Launay, J.-P., Eur. J. Inorg. Chem. 2000, p. 158121590. doi 143421948/00/070721581

    Google Scholar 

  34. Launay, J.P., Fraysse, S., and Coudret, C., Mol. Cryst. Liq. Cryst. 2000, vol. 344, p. 125.

    Article  CAS  Google Scholar 

  35. Liu, Y., Lagrost, C., Costuas, K., Tchouar, N., Le Bozec, H., and Rigaut, S., Chem. Commun. 2008, p. 6117. doi https://doi.org/10.1039/b815899a

    Google Scholar 

  36. Jukes, R.T.F., Adamo, V., Hartl, F., Belser, P., and De Cola, L., Inorg. Chem. 2004, vol. 43, no. 9, p. 2779. doi https://doi.org/10.1021/ic035334e

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka, Y., Inagaki, A., and Akita, M., Chem. Commun. 2007, p. 1169. doi https://doi.org/10.1039/b614748h

    Google Scholar 

  38. Motoyama, K., Koike, T., and Akita, M., Chem. Commun. 2008, p. 5812. doi https://doi.org/10.1039/b809318k

    Google Scholar 

  39. Tanaka, Y., Ishisaka, T., Inagaki, A., Koike, T., Lapinte, C., and Akita, M., Chem. Eur. J. 2010, vol. 16, p. 4762. doi https://doi.org/10.1002/chem.200903583

    Article  CAS  PubMed  Google Scholar 

  40. Motoyama, K., Li, H., Koike, T., Hatakeyama, M., Yokojima, S., Nakamura, S., and Akita, M., Dalton Trans. 2011, vol. 40, p. 10643. doi https://doi.org/10.1039/c1dt10727e

    Article  CAS  PubMed  Google Scholar 

  41. Stellacci, F., Toscano, F., Gallazzi, M.C., and Zerbi, G., Synth. Met. 1999, vol. 102, p. 979.

    Article  CAS  Google Scholar 

  42. Stellacci, F., Bertarelli, C., Toscano, F., Gallazzi, M.C., Zotti, G., and Zerbi, G., Adv. Mater. 1999, vol. 11, p. 292.

    Article  CAS  Google Scholar 

  43. Bertarelli, C., Bianco, A., Boffa, V., Mirenda, M., Gallazzi, M.C., and Zerbi, G., Adv. Funct. Mater. 2004, vol. 14, p. 1129. doi https://doi.org/10.1002/adfm.200304295

    Article  CAS  Google Scholar 

  44. Lee, J., Kwon, T., and Kim, E., Tetrahedron Lett. 2007, vol. 48, p. 249. doi https://doi.org/10.1016/j.tetlet.2006.11.039

    Article  CAS  Google Scholar 

  45. Baron, R., Onopriyenko, A., Katz, E., Lioubashevski, O., Willner, I., Wang, S., and Tian, H., Chem. Commun. 2006, p. 2147. doi https://doi.org/10.1039/b518378b

    Google Scholar 

  46. Areephong, J., Browne, W.R., Katsonis, N., and Feringa, B.L., Chem. Commun. 2006, p. 3930. doi https://doi.org/10.1039/b608502d

    Google Scholar 

  47. Iyoda, T., Saika, T., Honda, K., and Shimidzu, T., Tetrahedron Lett. 1989, vol. 30, p. 5429.

    Article  CAS  Google Scholar 

  48. Saika, T., Iyoda, T., Honda, K., and Shimidzu, T., J. Chem. Soc. Perkin Trans. 2, 1993, p. 1181.

    Google Scholar 

  49. Newell, A.K. and Utley, J.H.P., J. Chem. Soc., Chem. Commun. 1992, p. 800.

    Google Scholar 

  50. Miki, S., Noda, R., and Fukunishi, K., Chem. Commun. 1997, p. 925.

    Google Scholar 

  51. Achatz, J., Fischer, C., Salbeck, J., and Daub, J., J. Chem. Soc. Chem. Commun., 1991, p. 504.

    Google Scholar 

  52. Doron, A., Katz, E., Portnoy, M., and Willner, I., Angew. Chem. Int. Ed. Engl. 1996, vol. 35, p. 1535.

    Article  CAS  Google Scholar 

  53. Doron, A., Portnoy, M., Lion-Dagan, M., Katz, E., and Willner, I., J. Am. Chem. Soc., 1996, vol. 118, p. 8937.

    Article  CAS  Google Scholar 

  54. Zhi, J.F., Baba, R., Hashimoto, K., and Fujishima, A., Chem. Lett. 1994, p. 1521.

    Google Scholar 

  55. Zhi, J.F., Baba, R., Hashimoto, K., and Fujishima, A., Ber. Bunsenges., Phys. Chem., 1995, vol. 99, p. 32.

    Article  CAS  Google Scholar 

  56. Zhi, J.F., Baba, R., Hashimoto, K., and Fujishima, A., J. Photochem. Photobiol., A, 1995, vol. 92, p. 91.

    Article  CAS  Google Scholar 

  57. Mitchell, R.H., Brkic, Z., Sauro, V.A., and Berg, D.J., J. Am. Chem. Soc. 2003, vol. 125, p. 7581. doi https://doi.org/10.1021/ja034807d

    Article  CAS  PubMed  Google Scholar 

  58. Daub, J., Salbeck, J., Knochel, T., Fischer, C., Kunkely, H., and Rapp, K.M., Angew. Chem. Int. Ed. Engl. 1989, vol. 28, p. 1494.

    Article  Google Scholar 

  59. Daub, J., Fischer, C., Salbeck, J., and Ulrich, K., Adv. Mater. 1990, vol. 2, p. 336.

    Article  Google Scholar 

  60. Bross, P.A., Mirlach, A., Salbeck, J., and Daub, J., DECHEMA-Monogr., 1990, vol. 121, p. 375.

    Google Scholar 

  61. Fox, M.A. and Hurst, J.R., J. Am. Chem. Soc., 1984, vol. 106, p. 7626.

    Article  CAS  Google Scholar 

  62. Liu, Z.F., Hashimoto, K., and Fujishima, A., Nature 1990, vol. 347, p. 658.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Barachevsky or V. G. Butenko.

Additional information

Original Russian Text © V.A. Barachevsky, V.G. Butenko, 2016, published in Rossiiskii Khimicheskii Zhurnal, 2016, Vol. 60, No. 4, pp. 3–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barachevsky, V.A., Butenko, V.G. Photoelectrochromic Organic Systems. Russ J Gen Chem 88, 2747–2772 (2018). https://doi.org/10.1134/S1070363218120459

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218120459

Keywords

Navigation