Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

  • 2879 Accesses

Abstract

Several approaches aimed at extending the spectral activity range of wide-band-gap semiconductors have been already reviewed in previous chapters of this book. In addition to structural modifications that may lead to different electronic effects, such as anionic or cationic doping and solid solution formation, there is a possibility of modifying the surface of the semiconductor with a substance that absorbs light energy and transfers it, under favourable conditions, to an otherwise photochemically inactive or less active substrate. This substance is referred to as photosensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe R, Hara K, Sayama K, Domen K, Arakawa H (2000) Steady hydrogen evolution from water on Eosin Y-fized TiO2 photocatalysts using a silane-coupling reagent under visible light irradiation. J Photoch Photobio A 137:63–69

    Article  Google Scholar 

  • Bae E, Choi W (2006) Effect of the anchoring group (carboxylate vs phosphonate) in Ru-Complex-sensitized TiO2 on hydrogen production under visible light. J Phys Chem B 110:14792–14799

    Article  Google Scholar 

  • Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photoch Photobio C 6:186–205

    Article  Google Scholar 

  • Cheung STC, Fung AKM, Lam MHW (1998) Visible photosensitization of TiO2 photodegradation of CCl4 in aqueous medium. Chemosphere 36:2461–2473

    Article  Google Scholar 

  • Cho Y, Choi W, Lee C-H, Hyeon T, Lee H-I (2001) Visible light induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35:966–970

    Article  Google Scholar 

  • Chowdhury P, Moreira J, Gomaa H, Ray AK (2012) Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: parametric and kinetic study. Ind Eng Chem Res 51:4523–4532

    Article  Google Scholar 

  • Ehret A, Stuhl L, Spitler MT (2001) Spectral sensitization of TiO2 nanocrystalline electrodes with aggregated cyanine dyes. J Phys Chem B 105:9960–9965

    Article  Google Scholar 

  • Fung AKM, Chiu BKW, Lam MHW (2003) Surface modification of TiO2 by a ruthenium (II)-polypyridyl complex via silyl-linkage for the sensitized photocatalytic degradation of carbon tetrachloride by visible irradiation. Water Res 37:1939–1947

    Article  Google Scholar 

  • Grätzel M (2003) Dye-sensitized solar cells. J Photoch Photobio C 4:145–153

    Article  Google Scholar 

  • Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photoch Photobio A 164:3–14

    Article  Google Scholar 

  • Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44:6841–6851

    Article  Google Scholar 

  • Hensel J, Wang G, Li Y, Zhang JZ (2010) Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation. Nano Lett 10:478–483

    Article  Google Scholar 

  • Hirano K, Suzuki E, Ishikawa A, Moroi T, Shiroishi H, Kaneko M (2000) Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. J Photoch Photobio A 136:157–161

    Article  Google Scholar 

  • Jin Z, Zhang X, Lu G, Li S (2006) Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over Eosin-sensitized TiO2-Investigation of different noble metal loading. J Mol Catal 259:275–280

    Article  Google Scholar 

  • Jin Z, Zhang X, Li Y, Li S, Lu G (2007) 5.1 % apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalysts under visible light irradiation. Catal Commun 8:1267–1273

    Article  Google Scholar 

  • Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordin Chem Rev 177:347–414

    Article  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Google Scholar 

  • Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251

    Article  Google Scholar 

  • Kay A, Grätzel M (1993) Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272–6277

    Article  Google Scholar 

  • Kim W, Tachikawa T, Majima T, Choi W (2009) Photocatalysis of dye-sensitized TiO2 nanoparticles with thin overcoat of Al2O3: enhanced activity for H2 production and dichlorination of CCl4. J Phys Chem C 113:10603–10609

    Article  Google Scholar 

  • Kim W, Tachikawa T, Majima T, Li C, Kim HJ, Choi W (2010) Tin-porphyrin sensitized TiO2 for the production of H2 under visible light. Energ Environ Sci 3:1789–1795

    Article  Google Scholar 

  • Kubacka A, Fernández-García M, Colón G (2012) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  Google Scholar 

  • Li Q, Chen L, Lu G (2007a) Visible-light induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst. J Phys Chem C 111:11494–11499

    Article  Google Scholar 

  • Li Q, Jin Z, Peng Y, Li S, Lu G (2007b) High-efficient photocatalytic hydrogen evolution on Eosin Y-sensitized Ti-MCM41 zeolite under visible-light irradiation. J Phys Chem C 111:8237–8241

    Article  Google Scholar 

  • Li Y, Guo M, Peng S, Lu G, Li S (2009) Formation of multilayer-Eosin Y-sensitized TiO2 via Fe3 + coupling for efficient visible-light photocatalytic hydrogen evolution. Int J Hydrogen Energ 34:5629–5636

    Article  Google Scholar 

  • Lobedank J, Bellmann E, Bendig J (1997) Sensitized photocatalytic oxidation of herbicides using natural sunlight. J Photoch Photobio A 108:89–93

    Article  Google Scholar 

  • Lopez-Luke T, Wolcott A, Xu L, Chen S, Wcn Z, Li J, De La Rosa E, Zhang JZ (2008) Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications. J Phys Chem C 112:1282–1292

    Article  Google Scholar 

  • Luque A, Martí A (2010) The intermediate band solar cell: progress toward the realization of an attractive concept. Adv Mater 22:160–174

    Article  Google Scholar 

  • Mele G, Del Sole R, Vasapollo G, García-López E, Palmisano L, Schiavello M (2003) Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine. J Catal 217:334–342

    Google Scholar 

  • Meyer TJ (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl Chem 58:1193–1206

    Article  Google Scholar 

  • Min S, Wang F, Han Y (2007) An investigation on synthesis and photocatalytic activity of polyaniline sensitized nanocrystalline TiO2 composites. J Mater Sci 42:9966–9972

    Article  Google Scholar 

  • Moon J, Yun CY, Chung K-W, Kang M-S, Yi J (2003) Photocatalytic activation of TiO2 under visible light using Acid Red 44. Catal Today 87:77–86

    Article  Google Scholar 

  • Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN (2008) Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2−MV2+. Int J Hydrogen Energ 33:3264–3269

    Article  Google Scholar 

  • Ooyama Y, Harima Y (2009) Molecular designs and syntheses of organic dyes for dye-sensitized solar cells. Eur J Org Chem 2903–2934

    Google Scholar 

  • Ozcan O, Yukruk F, Akkaya EU, Uner D (2007) Dye sensitized artificial photosynthesis in the gas phase over thin and thick TiO2 films under UV and visible light irradiation. Appl Catal B-Environ 71:291–297

    Article  Google Scholar 

  • Park H, Bae E, Lee J-J, Park J, Choi W (2006) Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behaviour of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. J Phys Chem B 110:8740–8749

    Article  Google Scholar 

  • Pei D, Luan J (2012) Development of visible light-responsive sensitized photocatalysts. Int J Photoenergy ID 262831:13

    Google Scholar 

  • Polo AS, Itokazu MK, Iha NYM (2004) Metal complexes sensitizers in dye-sensitized solar cells. Coordin Chem Rev 248:1343–1361

    Article  Google Scholar 

  • Rajeshwar K, de Tacconi NR, Chenthamarakshan CR (2001) Semiconductor-based composite materials: preparation, properties, and performance. Chem Mater 13:2765–2782

    Article  Google Scholar 

  • Ratanatawanate C, Bui A, Vu K, Balkus KJ (2011) Low-temperature synthesis of copper(II) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties. J Phys Chem C 115:6175–6180

    Article  Google Scholar 

  • Robertson N (2006) Optimizing dyes for dye-sensitized solar cells. Angew Chem Int Ed 45:2338–2345

    Article  Google Scholar 

  • Ross H, Bendig J, Hecht S (1994) Sensitized photocatalytical oxidation of terbuthylazine. Sol Energ Mat Sol C 33:475–481

    Article  Google Scholar 

  • Sauvé G, Cass ME, Coia G, Doig SJ, Lauermann I, Pomykal KE, Lewis NS (2000) Dye sensitization of nanocrystalline titanium dioxide with osmium and ruthenium polypyridyl complexes. J Phys Chem B 104:6821–6836

    Article  Google Scholar 

  • Song L, Qiu R, Mo Y, Zhnag D, Wei H, Xiong Y (2007) Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light. Catal Commun 8:429–433

    Article  Google Scholar 

  • Tada H, Fujishima M, Kobayashi H (2011) Photodeposition of metal sulfide quantum dots on titanium (IV) dioxide and the applications to solar energy conversion. Chem Soc Rev 40:4232–4243

    Article  Google Scholar 

  • Vogel R, Hoyer P, Weller H (1994) Quantum-sized PbS, CdS, AgzS, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem 98:3183–3188

    Article  Google Scholar 

  • Wang C, Kwon KW, Odlyzko ML, Lee BH, Shim M (2007) PbSe nanocrystal/TiOx heterostructured films: a simple route to nanoscale heterointerfaces and photocatalysis. J Phys Chem C 111:11734–11741

    Article  Google Scholar 

  • Wang C, Thompson RL, Baltrus J, Matranga C (2010) Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. J Phys Chem Lett 1:48–53

    Article  Google Scholar 

  • Wang C, Thompson RL, Ohodnicki P, Baltrus J, Matranga C (2011) Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts. J Mater Chem 21:13452–13457

    Article  Google Scholar 

  • Wang H, Wang G, Ling Y, Lepert M, Wang C, Zhang JZ, Li Y (2012) Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4:1463–1466

    Article  Google Scholar 

  • Xie Y, Ali G, Yoo SH, Cho SO (2010) Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl Mater Interf 2:2910–2914

    Article  Google Scholar 

  • Youngblood WJ, Seung-Hyun AL, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Accounts Chem Res 42:1966–1973

    Article  Google Scholar 

  • Zhao J, Chen C, Ma W (2005) Photocatalytic degradation of organic pollutants under visible light irradiation. Top Catal 35:269–278

    Article  Google Scholar 

  • Zhu J, Wang S, Wang J, Zhang D, Li H (2011) Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots. App Catal B Environ 102:120–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Fresno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Fresno, F., Hernández-Alonso, M.D. (2013). Sensitizers: Dyes and Quantum Dots. In: Coronado, J., Fresno, F., Hernández-Alonso, M., Portela, R. (eds) Design of Advanced Photocatalytic Materials for Energy and Environmental Applications. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-5061-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5061-9_16

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5060-2

  • Online ISBN: 978-1-4471-5061-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics