Skip to main content
Log in

Effect of the nature of conductive supported nickel electrocatalyst for salicylic acid oxidation in alkaline medium

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of Ni films electrodeposited on glassy carbon (Ni/GC), titanium (Ni/Ti), and gold (Ni/Au) electrodes toward salicylic acid (SA) oxidation are investigated. The cyclic voltammetry studies show that the nature of substrate strongly influences the apparent electrocatalytic activities of the nickel over layer in basic medium. It is observed that the Ni/GC electrode has higher activity for SA oxidation compared to other electrodes. Effects of various parameters such as concentration of Ni2+, deposition time for Ni film growth, and deposition potential on the electrooxidation of SA are investigated. It is demonstrated that the Ni(OH)2/NiOOH plays the key role in the electrooxidation of SA. The response to SA on the Ni/GC electrode is examined using chronoamperometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikami, E., Goto, T., Ohno, T., Matsumoto, H., and Nishida, M., J. Pharma. Biomed. Anal., 2002, vol. 28, no. 7, pp. 261–267.

    Article  CAS  Google Scholar 

  2. Abdolmohammad-Zadeh, H., Kohansal, S., and Sadeghi, G.H., Talanta, 2011, vol. 84, no. 6, pp. 368–373.

    Article  CAS  Google Scholar 

  3. Saha, U., and Baksi, K., Analyst, 1985, vol.110, no. 3, pp. 739–741.

    Article  CAS  Google Scholar 

  4. Ruiz-Medina, A., Fernàndez-de Córdova, M.L., Ortega-Barrales, P., and Molina-Díaz, A., Int. J. Pharm., 2001, vol. 216, no. 10, pp. 95–104.

    Article  CAS  Google Scholar 

  5. Kokot, Z., and Burda, K., J. Pharm. Biomed. Anal., 1998, vol. 18, no. 5, pp. 871–875.

    Article  CAS  Google Scholar 

  6. Marcelo, M.S., Marcello, G.T., and Ronei, J.P., Talanta, 2006, vol. 68, p. 1707.

    Article  Google Scholar 

  7. Kakkar, T., and Mayersohn, M., J. Chromatogr., B, 1998, vol.718, no. 7, pp. 69–75.

    Article  CAS  Google Scholar 

  8. Kees, F., Jehnich, D., and Grobecker, H., J. Chromatogr., B, 1996, vol. 677, no. 6, pp. 172–177.

    Google Scholar 

  9. Jena, J.F., Tsaia, Y.Y., and Yang, T.C., J. Chromatogr., A, 2001, vol. 912, no. 5, pp. 39–43.

    Article  Google Scholar 

  10. Petrek, J., Havel, L., Petrlova, J., Adam, V., Potesil, D., Babula, P., and Kizek, R., Russ. J. Plant. Physiol., 2007, vol. 54, no. 7, pp. 553–559.

    Article  CAS  Google Scholar 

  11. Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J., Talanta, 2004, vol. 62, no. 5, pp. 247–251.

    Article  CAS  Google Scholar 

  12. Wang, Z., Wei, F., Liu, S.Y., Xu, Q., Huang, J.Y., Dong, X.Y., Yu, J.H., Yang, Q., Zhao, Y.D., and Chen, H., Talanta, 2010, vol. 80, no. 5, pp. 1277–1281.

    Article  CAS  Google Scholar 

  13. Wang, Z., Ai, F., Xu, Q., Yang, Q., Yu, J.H., Huang, W.H., and Zhao, Y.D., Colloids Surf., B, 2010, vol. 76, no. 6, pp. 370–374.

    Article  CAS  Google Scholar 

  14. Gualandi, I., Scavetta, E., Zappoli, S., and Tonelli, D., Biosens. Bioelectron., 2011, vol. 26, no. 7, pp. 3200–3206.

    Article  CAS  Google Scholar 

  15. Zhang, W.D., Xu, B., Hong, Y.X., Yu, Y.X., Ye, J.S., and Zhang, J.Q., J. Solid State Electrochem., 2010, vol. 14, no. 6, pp. 1713–1718.

    Article  CAS  Google Scholar 

  16. Holade, Y., Morais, C., Clacens, S.A., Servat, K., Napporn, T. W., and Kokoh, K.B., Electrocatal., 2013, vol. 4, no. 8, pp. 167–174.

    Article  CAS  Google Scholar 

  17. Shakkthivel, P. and Chen, S.M., Biosens. Bioelectron., 2007, vol. 22, no. 8, pp. 1680–1687.

    Article  CAS  Google Scholar 

  18. Verlato, E., Cattarin, S., Comisso, N., Gambirasi, A., Musiani, M., and Gómez, L.V., Electrocatal., 2012, vol. 3, no. 5, pp. 48–52.

    Article  CAS  Google Scholar 

  19. Shaidarova, L.G., Gedmina, A.V., Chelnokova, I.A., and Budnikov, G.K., Russ. J. Appl. Chem., 2007, vol. 80, no. 7, pp. 1346–1352.

    Article  CAS  Google Scholar 

  20. Zhao, C., Li, M., and Jiao, K., J. Anal. Chem., 2006, vol. 61, no. 5, pp. 1204–1208.

    Article  CAS  Google Scholar 

  21. Majdi, S., Jabbari, A., and Heli, H., J. Solid State Electrochem., 2007, vol. 11, no. 7, pp. 601–607.

    Article  CAS  Google Scholar 

  22. Safavi, A., Maleki, N., and Farjami, E., Biosens. Bioelectron., 2009, vol. 24, no. 6, pp. 1655–1660.

    Article  CAS  Google Scholar 

  23. Roushani, M., Shamsipur, M., and Pourmortazavi, S.M., J. Appl. Electrochem., 2012, vol. 42, no. 7, pp. 1005–1011.

    Article  CAS  Google Scholar 

  24. Jafarian, M., forouzandeh, F., Danaee, I., and Gobal, F., J. Solid State Electrochem., 2009, vol. 13, no. 9, pp. 1171–1179.

    Article  CAS  Google Scholar 

  25. Danaee, I., Jafarian, M., Mirzapoor, A., Gobal, F., and Mahjani, M.G., Electrochim. Acta, 2010, vol. 55, no. 8, pp. 2093–2100.

    Article  CAS  Google Scholar 

  26. Elahi, M.Y., Heli, H., Bathaie, S.Z., and Mousavi, M.F., J. Solid State Electrochem., 2007, vol. 11, no. 10, pp. 273–282.

    Google Scholar 

  27. Gholivanda, M.B., Pashabadi, A., Azadbakht, A., and Menati, S., Electrochim. Acta, 2011, vol. 56, no. 9, pp. 4022–4030.

    Article  Google Scholar 

  28. Zheng, L., and Song, J.F., Anal. Biochem., 2009, vol. 391, no. 8, pp. 56–63.

    Article  CAS  Google Scholar 

  29. Jafarian, M., Mahjani, M.G., Heli, H., Gobal, F., and Heydarpoor, M., Electrochem. Commun., 2003, vol. 5, no. 7, pp. 184–190.

    Article  CAS  Google Scholar 

  30. Kowal, A., Port, S.N., and Nichols, R.J., Catal. Today, 1997, vol. 38, no. 6, pp. 483–488.

    Article  CAS  Google Scholar 

  31. MacDougall, B., Mitchell, D.F., and Graham, M.J., J. Electrochem. Soc., 1980, vol. 127, no. 5, pp. 1248–1252.

    Article  CAS  Google Scholar 

  32. Wohlfahrt-Mehrens, M., Oesten, R., Wilde, P., and Huggins, R.A., Solid State Ionics, 1996, vol. 86, no. 5, pp. 841–849.

    Article  Google Scholar 

  33. El-Shafei, A.A., J. Electroanal. Chem., 1999, vol. 471, no. 7, pp. 489–195.

    Google Scholar 

  34. Bard, A.J., and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, John Wiley Press, 2001, 2 ed., p. 196.

    Google Scholar 

  35. Ai, S.Y., Wang, Q.J., Li H, and Jin, L.T., J. Electroanal. Chem., 2005, vol. 578, no. 7, pp. 223–229.

    Article  CAS  Google Scholar 

  36. Hao-Yu, E., Scott, K., and Reeve, R.W., J. Electroanal. Chem., 2003, vol. 547, no. 9, pp. 17–25.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Doulache.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doulache, M., Benchettara, A. Effect of the nature of conductive supported nickel electrocatalyst for salicylic acid oxidation in alkaline medium. Russ J Gen Chem 84, 775–781 (2014). https://doi.org/10.1134/S107036321404029X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321404029X

Keywords

Navigation