Skip to main content
Log in

Quantum-chemical approaches to identification of nanostructures synthesized by molecular layering technique

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Identification of nanostructures synthesized on silica surface by molecular layering technique was discussed with the example of vanadium oxide systems. Variation of technological factors in synthesis of the nanostructures was analyzed from the standpoint of controlling their chemical composition and local structure, as well as in the context of relationships with the stability and functional characteristics. It was shown that, based on chemical analysis and vibrational spectroscopy data, the element-containing nanostructures can be identified only ambiguously, while a promising alternative can be found in quantum-chemical modeling. The optimal modeling modes and methods were elucidated with the use of the cluster approach. The Gaussian03 calculations showed that the Si-O-V stretching vibration frequency varies with the number of the metal-silica surface bonds. The predictions for nanosystems with different local structures quantitatively agree with the experimental spectral characteristics and are suitable for identification of the objects examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foster L., Nanotechnology, Science, Innovation, and Opportunity, Upper Saddle River (NJ): Prentice Hall PTR, 2005.

    Google Scholar 

  2. Aleskovskii, V.B., Stekhiometriya i sintez tverdykh soedinenii (Stoichiometry and Synthesis of Solids), Leningrad: Nauka, 1976.

    Google Scholar 

  3. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii: Uchebnoe posobie (Chemistry of Supramolecular Compounds: Textbook), St. Petersburg: Izd. Sankt-Peterb. Gos. Univ., 1996.

    Google Scholar 

  4. Aleskovskii, V.B., Zh. Prikl. Khim., 1974, vol. 47, no. 10, p. 2145.

    CAS  Google Scholar 

  5. Kol’stov, S.I. and Aleskovskii, V.B., Zh. Fiz. Khim., 1968, vol. 42, no. 5, pp. 1210–1214.

    Google Scholar 

  6. Belyakov, A.V., Zharikov, E.V., and Malygin, A.A., in Khimicheskie tekhnologii, Nauchno-tekhnicheskaya programma “Nauchnye issledovaniya vysshei shkoly po prioritetnym napravleniyam nauki i tekhniki (Chemical Technologies, Scientific and Technical Program “Scientific Research at High School on Priority Lines of Science and Technology”), Sarkisov, P.D., Ed., Moscow: Ross. Khim.-Technol. Univ., 2003.

    Google Scholar 

  7. Dubrovenskii, S.D., Malkov, A.A., and Malygin, A.A., The Chemical Basis of Surface Modification Technology of Silica and Alumina by Molecular Layering Method, in Adsorption on New and Modified Inorganic Sorbents, Amsterdam: Elsevier, 1996, vol. 99, p. 213.

    Google Scholar 

  8. Malygin, A.A., Zh. Obshch. Khim., 2002, vol. 72, no. 4, p. 617.

    Google Scholar 

  9. Aleskovskii, V.B., Khimiya poverkhnosti i nanotechnologiya vysokoorganizovannykh veshchestv: Sbornik nauchnykh trudov (Chemistry of Surface and Nanotechnology of Highly Organized Substances: Coll. of Papers), Sankt-Peterb. Gos. Teckhnol. Inst. (Tekh. Univ.), 2007, pp. 8–21.

  10. Malygin, A.A., Khimiya poverkhnosti i nanotekhnologiya vysokoorganizovannykh veshchestv: Sbornik nauchnykh trudov (Chemistry of Surface and Nanotechnology of Highly Organized Substances: Coll. of Papers), Sankt-Peterb. Gos. Teckhnol. Inst. (Tekh. Univ.), 2007, pp. 22–55.

  11. Rusanov, A.I., Termodinamicheskie osnovy mekhanokhimii (Thermodynamic Fundamentals of Mechanochemistry), St. Petersburg: Nauka, 2006.

    Google Scholar 

  12. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006, p. 592.

    Google Scholar 

  13. Nanotekhnologiya: fizika, protesessy, diagnostika, pribory (Nanotechnology: Physics, Processes, Diagnostics, and Instruments), Luchinin, V.V. and Tairov, Yu.M., Eds., Moscow: FIZMATLIT, 2006, p. 552.

    Google Scholar 

  14. Dubrovenskii, S.D., Khimiya poverkhnosti i nanotekhnologiya vysokoorganizovannykh veshchestv: Sbornik nauchnykh trudov (Chemistry of Surface and Nanotechnology of Highly Organized Substances: Coll. of Papers), Sankt-Peterbr. Gos. Teckhnol. Inst. (Tekh. Univ.), 2007, pp. 253–274.

  15. FI Patent 51742.

  16. Nishizava, J., J. Electrochem. Soc., 1985, vol. 132, p. 1197.

    Article  Google Scholar 

  17. Puurunen, R., J. Appl. Phys., 2005, vol. 97, p. 121301.

    Article  Google Scholar 

  18. Magsumov, M.I., Fedotov, A.S., Tsodikov, M.V., et al., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, p. 142.

    Google Scholar 

  19. Malygin, A.A., Ross. Nanotekhnol., 2007, vol. 2, nos. 3–4, pp. 87–100.

    Google Scholar 

  20. Lisichkin, G.V., Modifitsirovannye kremnezemy v sorbtsii, katalize i khromatografii (Modified Silicas in Sorption, Catalysis, and Chromatography), Moscow: Khimiya, 1986.

    Google Scholar 

  21. Morrow, B.A. and Hardin, A.H., J. Phys. Chem., 1979, vol. 83, no. 24, p. 3135.

    Article  CAS  Google Scholar 

  22. Lindblad, M., Haukka, S., Kytokivi, A., Lakomaa, E.-L., Rautianen, A., and Suntola, T., Appl. Surf. Sci., 1997, vol. L21, pp. 286–291.

    Article  Google Scholar 

  23. Haukka, S. and Suntola, T., Interface Sci., 1997, vol. 5, pp. 119–128.

    Article  CAS  Google Scholar 

  24. Keranen, J., Auroux, A., Ek, S., and Niinisto, L., Appl. Catal. A, 2002, vol. 228, no. 1, pp. 213–225.

    Article  CAS  Google Scholar 

  25. Hair, M.L. and Hertl, W., J. Phys. Chem., 1973, vol. 77, p. 2070.

    Article  CAS  Google Scholar 

  26. Kinney, J.B. and Staley, R.H., J. Phys. Chem., 1983, vol. 87, no. 19, pp. 3735–3740.

    Article  CAS  Google Scholar 

  27. Osipenkova, O.V., Malkov, A.A., and Malygin, A.A., Zh. Obshch. Khim., 1994, vol. 64, no. 4, pp. 549–553.

    CAS  Google Scholar 

  28. Tripp, C.P., Langmuir, 2005, vol. 21, no. 1, pp. 211–216.

    Article  Google Scholar 

  29. Ritala, M., Leskela, M., Niinisto, L., and Haussalo, P., Chem. Mater., 1993, vol. 5, no. 8, pp. 1174–1181.

    Article  CAS  Google Scholar 

  30. Malygin, A.A., Volkova, A.N., Kol’tsov, S.I., and Aleskovskii, V.B., Zh. Obshch. Khim., 1972, vol. 42, no. 71, pp. 1436–1440.

    Google Scholar 

  31. Malygin, A.A., Volkova, A. N., Kol’tsov, S.I., and Aleskovskii, V.B., Zh. Obshch. Khim., 1973, vol. 43, no. 11, pp. 2373–2375.

    Google Scholar 

  32. Wachs, I.E., Chen, Yongsheng, Jehng, Jih-Mirn, Briand, L.E., and Tanaka, Tsunehiro, Catal. Today, 2003, vol. 78, pp. 13–24.

    Article  CAS  Google Scholar 

  33. Wachs, I.E., Catal. Today, 2005, vol. 100, pp 79–94.

    Article  CAS  Google Scholar 

  34. Lee, E.L. and Wachs, I.E., J. Phys. Chem. C, 2007, vol. 111, no. 39, pp. 14410–14425.

    Article  CAS  Google Scholar 

  35. Weckhuysen, B.M. and Keller, D.E., Catal. Today, 2003, vol. 78, pp. 25–46.

    Article  CAS  Google Scholar 

  36. Osipenkova, O.V., Malkov, A.A., and Malygin, A.A., Zh. Obshch. Khim., 1996, vol. 66, no. 1, pp. 7–11.

    CAS  Google Scholar 

  37. Kiselev, A.V. and Lygin, V.I., Infrakrasnye spektry poverkhnostnykh soedinenii i adsorbirovannykh molekul (Infrared Spectra of Surface Compounds and Adsorbed Molecules), Moscow: Nauka, 1972.

    Google Scholar 

  38. Zhuravlev, L.T., Langmuir, 1987, vol. 3, no. 3, pp. 316–318.

    Article  CAS  Google Scholar 

  39. Evdokimov, A.V., Malygin, A.A., and Kol’tsov, S.I., Zh. Prikl. Khim., 1986, vol. 59, no. 3, pp. 650.

    CAS  Google Scholar 

  40. Roozeboom, F., Mittelmeijer-Hazeleger, M.C., Moulljn, J.A., Beer, V.H.J. de, and Gellings, P.J., J. Phys. Chem., 1980, vol. 84, no. 21, pp. 2783–2791.

    Article  CAS  Google Scholar 

  41. Oyama, S.T., Went, G.T., Lewis, K.B., Bell, A.T., and Somorjai, G.A., J. Phys. Chem., 1989, vol. 93, no. 18, pp. 6786–6790.

    Article  CAS  Google Scholar 

  42. Das, N., Eckert, H., Hangchun, Hu, Wachs, I.E., Walzer, J.F., and Feher, F.J., J. Phys. Chem., 1993, vol. 97, no. 31, pp. 8240–8243.

    Article  CAS  Google Scholar 

  43. Schraml-Marth, M., Wokaun, A., Pohl, M., and Krauss, H.-L., J. Chem. Soc. Farad. Trans., 1991, vol. 87, no. 16, pp. 2635–2646.

    Article  CAS  Google Scholar 

  44. Hanke, W., Bienert, R., and Jerschkewitz, H.-G., Z. Anorg. Allg. Chem., 1975, vol. 414, no. 2, pp. 109–129.

    Article  CAS  Google Scholar 

  45. Wildberger, M.D., Mallat, T., Gobel, U., and Baiker, A., Appl. Catal. A, 1998, vol. 168, p. 69–80.

    Article  CAS  Google Scholar 

  46. Neumann, R. and Levin-Elad, M., Appl. Catal. A, 1995, vol. 122, p. 85.

    Article  CAS  Google Scholar 

  47. Dutoit, D.C.M., Schneider, M., Fabrizioli, P., and Baiker, A., J. Mater. Chem., 1997, vol. 7, no. 2, pp. 271–278.

    Article  CAS  Google Scholar 

  48. van Lingen, J.N.J., Gijzeman, O.L.J., Weckhuysen, B.M., and van Lenthe, J.H., J. Catal., 2006, vol. 239, no. 1, pp. 34–41.

    Article  Google Scholar 

  49. Gijzeman, O.L.J., van Lingen, J.N.J., Tinnemans, S.J., Keller, D.E., and Weckhuysen, B.M., Chem. Phys. Lett., 2004, vol. 397, p. 277–281.

    Article  CAS  Google Scholar 

  50. Magg, N., Immaraporn, B., Giorgi, J.B., Schroeder, T., Baumer, M., Dobler, J., Wu, Z., Kondratenko, E., Cherian, M., Baerns, M., Stair, P.C., Sauer, J., and Freund, H.J., J. Catal., 2004, vol. 226, pp. 88–100.

    Article  CAS  Google Scholar 

  51. Rice, G.L. and Scott, S.L., Langmuir, 1997, vol. 13, pp. 1545–1551.

    Article  CAS  Google Scholar 

  52. Rice, G.L. and Scott, S.L., J. Mol. Catal. A, 1997, vol. 125, pp. 73–79.

    Article  CAS  Google Scholar 

  53. Deguns, E.W., Taha, Z., Meitzner, G.D., and Scott, S.L., J. Phys. Chem. B, 2005, vol. 109, pp. 5005–5011.

    Article  CAS  Google Scholar 

  54. Todorova, T.K., Ganduglia-Pirovano, M.V., and Sauer, J., J. Phys. Chem. C, 2007, vol. 111, no. 13, pp. 5141–5153.

    Article  CAS  Google Scholar 

  55. Pelmenschikov, A.G., Morosi, G., and Gamba, A., J. Phys. Chem., 1997, vol. 101, no. 6, pp. 1178–1187.

    CAS  Google Scholar 

  56. Ignatov, S.K., Bagatur’yants, A.A., Razuvaev, A.G., Alfimov, M.V., Molotovshchikova, M.B., and Dodonov, V.A., Izv. Ross. Akad. Nauk, Ser. Khim., 1998, no. 7, pp. 1296–1303.

  57. Sauer, J. and Dobler, J., Dalton Trans., 2004, pp. 3116–3121.

  58. Kobayashi, Y., Tajima, N., Nakano, H., and Hirao, K., J. Phys. Chem. B, 2004, vol. 108, no. 33, pp. 12264–12266.

    Article  CAS  Google Scholar 

  59. Dubrovenskii, S.D., Kulakov, N.V., and Malygin, A.A., Zh. Prikl. Khim., 2006, vol. 79, no. 2, pp. 177–183.

    Google Scholar 

  60. Goodrow, A. and Bell, A.T., J. Phys. Chem. C, 2007, vol. 111, no. 40, pp. 14753–14761.

    Article  CAS  Google Scholar 

  61. Avdeev, V.I. and Zhidomirov, G.M., Zh. Strukt. Khim., 2005, vol. 46, no. 4, pp. 599–612.

    Google Scholar 

  62. Gaussian 03, Revision C.02, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  63. Lygin, V.I., Zh. Fiz. Khim., 2000, vol. 74, no. 8, pp. 1351–1359.

    CAS  Google Scholar 

  64. van Lingen, J.N.J., Gijzeman, O.L.J., Havenith, R.W.A., and van Lenthe, J.H., J. Phys. Chem. C, 2007, vol. 111, no. 19, pp. 7071–7077.

    Article  Google Scholar 

  65. Khaliullin, R.Z. and Bell, A.T., J. Phys. Chem. B, 2002, vol. 106, no. 32, pp. 7832–7838.

    Article  CAS  Google Scholar 

  66. Keller, D.E., Visser, T., Soulimani, F., Koningsberger, D.C., and Weckhuysen, B.M., Vibr. Spectrosc., 2007, vol. 43, pp. 140–151.

    Article  CAS  Google Scholar 

  67. Filguera, R.R., Fournier, L.L., and Varetti, E.L., Spectrochim. Acta, 1982, vol. 38, no. 9, pp. 965–969.

    Article  Google Scholar 

  68. Ault, B.S., J. Phys. Chem. A, 1999, vol. 103, no. 51, pp. 11474–11480.

    Article  CAS  Google Scholar 

  69. Subel, B.L. Kayser, D.A., and Ault, B.S., J. Phys. Chem. A, 2002, vol. 106, no. 19, pp. 4998–5004.

    Article  CAS  Google Scholar 

  70. Witke, K., Lachowicz, A., Bruser, W., and Zeigan, D., Z. Anorg. Allg. Chem., 1980, vol. 465, no. 6, pp. 193–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Malygin.

Additional information

Original Russian Text © A.A. Malygin, S.D. Dubrovenskii, 2010, published in Rossiiskii Khimicheskii Zhurnal, 2010, Vol. 53, No. 2, pp. 98–110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malygin, A.A., Dubrovenskii, S.D. Quantum-chemical approaches to identification of nanostructures synthesized by molecular layering technique. Russ J Gen Chem 80, 643–657 (2010). https://doi.org/10.1134/S1070363210030448

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363210030448

Keywords

Navigation