Skip to main content
Log in

Isolation, Physico-Chemical Characteristics, and Acute Toxicity Evaluation of Water-Soluble Polysaccharide from Basidial Raw Material Ganoderma lucidum

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

ctive: As a result of the study, branched polysaccharides were isolated from the basidiomycete raw materials of Ganoderma lucidum. It has been established that the isolated fractions contain branched polysaccharides in the form of complexes with melanin. Methods: After purification of polysaccharides by ion-exchange chromatography, two fractions were obtained from basidial raw materials: neutral polysaccharides GW-1 with a yield of 25.71% and anionic polysaccharides GW-2, the yield of which was 5.26%, respectively. The physicochemical properties of the obtained samples were studied by IR and UV spectroscopy. The degree of purity of the obtained fractions of branched polysaccharides was established. Using gas chromatography, one-dimensional (13C NMR, 1H NMR) and two-dimensional (COSY, TOCSY, HSQC, HMBC, NOESY) NMR spectroscopy, the composition and molecular structure of the obtained polysaccharide samples were determined. Results and Discussion: The results showed that the isolated and purified polysaccharides are branched glucans with 1,4,6- and 1,3,6-bonds between glucopyranose units. Pharmacotoxicological studies were carried out on white outbred mice and it was found that the resulting polysaccharides belong to class V, practically non-toxic compounds (LD50³ 2000 mg/kg). Conclusions: Isolated polysaccharides (GW) are promising biologically active components, on the basis of which it is possible to create drugs with hepatoprotective and antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

  1. Wasser, P. and Weis, L., Int. J. Med. Mushrooms, 1999, vol. 1, pp. 31–62. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30

    Article  CAS  Google Scholar 

  2. Wasser, S.P., Appl. Microbiol. Biotechnol., 2002, vol. 60, pp. 258–274. https://doi.org/10.1007/s00253-002-1076-7

    Article  CAS  PubMed  Google Scholar 

  3. Mizuno, T., Foods Food Ingred. J. Jpn., 1996, vol. 167, pp. 69–85.

    CAS  Google Scholar 

  4. Mizuno, T., Food Rev. Int., 1995, vol. 11, pp. 173­–178.

    Article  CAS  Google Scholar 

  5. Gorin, P.A.J. and Barreto-Berger, E., The Chemistry of Polysaccharides of Fungi and Lichens. The Polysaccharides, Ed. Aspinall G.O. New York: Academic Press, 1983. pp. 365–409.

  6. Liu, W., Lu, W., Chai, Y., Liu, Y., Yao, W., and Gao, Х., Carbohydr. Polym., 2017, vol. 176, pp. 140–151. https://doi.org/10.1016/j.carbpol.2017.08.071

    Article  CAS  PubMed  Google Scholar 

  7. Guo, Q., Ai, L., and Cui, S.W., Strategies for Structural Characterization of Polysaccharides. In: Methodology for Structural Analysis of Polysaccharides, Springer Briefs in Molecular Science, Springer, Cham, 2018, pp. 20–25.

  8. Pan, D., Wang, L., Chen, C., Teng, B., Wang, Ch., Xu, Z., Hu, B., and Zhou, P., Food Chem., 2012, vol. 135, pp. 1097–1103.

    Article  CAS  PubMed  Google Scholar 

  9. Magdeldin, S. and Moser, A.C., Affinity Chromatography: Principles and Applications, Magdeldin S., Ed., InTech, 2012, pp. 3–28. https://doi.org/10.5772/39087

  10. Wang, Q., Zhao, X., Pu, J., and Luan, X., Carbohydr. Polym., 2016, vol. 143, pp. 296–300. https://doi.org/10.1016/j.carbpol.2016.02.023

    Article  CAS  PubMed  Google Scholar 

  11. Kim, Y., Kim, B., Cheong, Ch., David, L., Williams Kim, Ch., and Lim, S., Carbohydr. Res., 2000, vol. 328, pp. 331–341. https://doi.org/10.1016/s0008-6215(00)00105-1

    Article  CAS  PubMed  Google Scholar 

  12. Patel, B.K., Campanella, O.H., and Janaswamy, S., Carbohydr. Polym., 2013, vol. 92, pp. 1873–1879. https://doi.org/10.1016/j.carbpol.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  13. Tao, Y., Zhang, R., Wei, Y., Liu, H., Yang, H., and Zhao, Q., Carbohydr. Polym., 2015, vol. 128, pp. 179–187. https://doi.org/10.1016/j.carbpol.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  14. Sushinskaya, N.V., Kukulyanskaya, T.A., Kurchenko, V.P., and Shostak, L.M., Chem. Technol. Org. Subst., 2004, no. 4, pp. 193–196.

    Google Scholar 

  15. Khalilova, G.A., Mukhitdinov, B.I., Khaytmetova, S.B., Nurmukhametov, N.S., and Turaev, A.S., Uzbek. Chem. J., 2019, no. 2, pp. 48–55.

    Google Scholar 

  16. Arun, G., Eyini, M., and Gunasekaran, P., J. Exp. Biol., 2015, vol. 53, pp. 380–387.

    CAS  Google Scholar 

  17. Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Yan, M., Tang, Q., and Zhang, J., Carbohydr. Polym., 2017, vol. 167, pp. 337–344. https://doi.org/10.1016/j.carbpol.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  18. Ding, H.H., Cui, S.W., Goff, H.D, Chen, J., Guo, Q., and Wang, Q., Carbohydr. Polym., 2016, vol. 151, pp. 538–545. https://doi.org/10.1016/j.carbpol.2016.05.094

    Article  CAS  PubMed  Google Scholar 

  19. Ren, Y., Bai, Y., Zhang, Z., Cai, W., Del, R., and Flores, A., Molecules, 2019, vol. 24, p. 3122. https://doi.org/10.3390/molecules24173122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khalilova, G.A., Turaev, A.S., Mukhitdinov, B.I., Khaytmetova, S.B., Azimova, L.B., and Nurmukhametov, N.S., Dokl. Akad. Nauk Rep. Uzbekistan, 2020, no. 5, pp. 55–62.

    Google Scholar 

  21. Manna, D.K., Nandi, A.K., Pattanayak, M., Maity, P., Tripathy, S., Mandal, A.K., Roy, S., Tripathy, S.S., Gupta, N., and Islam, S.S., Carbohydr. Polym., 2015, vol. 134, pp. 375–384. https://doi.org/10.1016/j.carbpol.2015.07.099

    Article  CAS  PubMed  Google Scholar 

  22. Yang, B., Prasad, K.N., and Jiang, Y., Carbohydr. Polym., 2016, vol. 137, pp. 570–575. https://doi.org/10.1016/j.carbpol.2015.10.088

    Article  CAS  PubMed  Google Scholar 

  23. Khalilova, G.A., Turaev, A.S., Mukhitdinov, B.I., Khaytmetova, S.B., and Normakhammatov, N.S., Chem.-Pharm. J., 2022, vol. 56, pp. 21–24. https://doi.org/10.30906/0023-1134-2022-56-8-21-24

    Article  Google Scholar 

  24. Khaytmetova, S.B., Turaev, A.S., Khalilova, G.A., Tagayalieva, N.A., and Abboskhonova, M.O., Exp. Clin. Pharmacol., 2022, vol. 85, pp. 38–41. https://doi.org/10.30906/0869-2092-2022-85-12-38-41

    Article  CAS  Google Scholar 

  25. Sidorov, K.K.., Toxicology of New Industrial Chemicals. Classification of Substances by Toxicity, Ed. Medicine, 1973, no. 3, p. 47.

  26. State Standard (GOST) 32644–2014. Testing Methods for the Effects of Chemical Products on the Human Body. Acute Oral Toxicity as a Method for Evaluation of the Acute Toxicity Class (OECD, Test № 423:2001, IDT). М.: Standardinform, 2015.

  27. BeMiller, J.N., Food Anal., 2017, pp. 333–360. https://doi.org/10.1007/978-3-319-45776-5_19

  28. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I., and Lee, Y.C., Anal. Biochem., 2004, vol. 339, pp. 69­–72. https://doi.org/10.1016/j.ab.2004.12.001

    Article  CAS  Google Scholar 

  29. Khaytmetova, S.B., Turaeva, A.S., and Khalilova, G.A., Polymer Sci. Ser. B, 2022, vol. 64, pp. 500–505. https://doi.org/10.1134/S1560090422700221

    Article  CAS  Google Scholar 

  30. Björndal, H., Hellerqvist, C.G., Lindberg, B., and Svensson, S., Ang. Chem. Int. Ed. Eng., 1970, vol. 9, pp. 610–619. https://doi.org/10.1002/anie.197006101

    Article  Google Scholar 

  31. Arzamascev, E.V., Berezovskaya, I.V., Verstakova, O.L., Guskova, T.A., Durnev, A.D., Ivanova, A.S., Krepkova, L.V., Sorokina, A.V., Methodological Recommendations for the Study of General Toxic Effect of Medicines. Guidelines for Preclinical Studies of Medicines, Part one, Ed. Grif and К, 2012, pp. 13–24.

  32. Guidelines for the Experimental (Preclinical) Study of New Pharmacological Substances, corresponding member of RAS, prof. R.U. Khabrieva (2nd revised and expanded edition), Ed. Medicine, 2005, 832 P.

  33. OECD Guideline for Testing of Chemicals. Acute Oral Toxicity – Fixed Dose Procedure, 2001, no. 420. https://ntp.niehs.nih.gov/sites/default/files/iccvam/suppdocs/feddocs/oecd/oecd_gl420.pdf

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the article.

Corresponding author

Correspondence to S. B. Khaytmetova.

Ethics declarations

Pharmaco-toxicological studies were carried out on mice, in accordance with the model used. Manipulations with laboratory animals were carried out in accordance with the European Convention for the Protection of Vertebrate Animals Used for Experimental or Other Scientific Purposes [European Directive 2010/63/EU on the protection of animals used for scientific purposes. September 22, 2010. Official Journal of the European Union, L 276/33-L276/79]. The animals had free access to food and water, in vivarium conditions, on a standard diet. No conflict of interest was declared by the authors.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaytmetova, S.B., Turaev, A.S., Khalilova, G.A. et al. Isolation, Physico-Chemical Characteristics, and Acute Toxicity Evaluation of Water-Soluble Polysaccharide from Basidial Raw Material Ganoderma lucidum. Russ J Bioorg Chem 50, 95–105 (2024). https://doi.org/10.1134/S1068162024010011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162024010011

Keywords:

Navigation