Skip to main content
Log in

Performance of Some Ion-Exchange Resins in Removal of 241Am(III), 152+154Eu(III), 99Mo(VI), 137Cs(I), and 60Co(II) from Simulated Nuclear Acidic Solutions

  • Published:
Radiochemistry Aims and scope

Abstract

Separation of 241Am(III), 152+154Eu(III), and 60Co(II) radionuclides from nitric acid solutions by the batch method using KU-2, TRU, and Amberlite® IR-120(H) resins was studied. The separation factors (SFs) of radionuclides are affected by the HNO3 concentration and resin type. In 3 M HNO3, the SF of 152+154Eu from 60Co and 241Am with the KU-2 resin was 628 and 26.48, respectively. In 0.01 M HNO3, the SF of 241Am from 60Co with the TRU resin reached 83. All the resins used showed good radiation resistance and stability up to 100 kGy. Simulated nuclear liquid waste containing minor actinides (241Am), lanthanides (152+154Eu), fission products (137Cs and 99Mo), and activation products (60Co) was successfully treated using column chromatography with the KU-2 resin. The radionuclides were stripped using 1.5 M aqueous HNO3 with 70–82% degree of stripping in one stage. Thus, the KU-2 and TRU resins can be used for treatment of the high level corrosion products containing trivalent long-lived minor actinides (5d elements, e.g., Am and Cm), lanthanides (4f elements) and/or divalent heavy metals (3d elements), associated with a nuclear power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Popova, N.N., Zhilov, V.I., Demin, S.V., and Tsivadze, A.Yu., Russ. J. Inorg. Chem., 2015, vol. 60, no. 6, pp. 754–758.

    Article  CAS  Google Scholar 

  2. Madic, C., Hudson, M.J., Liljenzin, J.O., Glatz, J.P., Nannicini, R., Facchini, A., Kolarik, Z., and Odoj, R., New Partitioning Techniques for Minor Actinides, EUR 19149 EN, 2000.

  3. Hideya, S., Yasuhiro, T., Tatsuya, K., Mitsunobu, S., Tomohiro, K., Shunichi, U., and Tatsuro, M., Anal. Sci., 2016, vol. 32, pp. 477–479.

    Article  Google Scholar 

  4. Oigawa, H., Nishihara, K., Nakayama, S., and Morita, Y., Proc. 10th Information Exchange Meet., Mito (Japan): OECD/NEA, 2010.

    Google Scholar 

  5. Shu, Q., Khayambashi, A., Zou, Q., Wang, X., Wei, Y., He, L., and Tang, F., J. Radioanal. Nucl. Chem., 2017, vol. 313, no. 1, pp. 29–37.

    Article  CAS  Google Scholar 

  6. Yamaji, K., Nuclear Back-End and Transmutation Technology for Waste Disposal: beyond the Fukushima Accident, Nakajima, K., Ed., Tokyo: Springer, 2015.

    Google Scholar 

  7. Malmbeck, R., Nourry, C., Ougier, M., Souček, P., Glatz, J., Kato, T., and Koyama, T., Energy Procedia, 2011, vol. 7, pp. 93–102.

    Article  CAS  Google Scholar 

  8. Herbst, R.S., Law, J.D., Todd, T.A., Romanovskiy, V.N., Babain, V.A., Esimantovskiy, V.M., Smirnov, I.V., and Zaitsev, B.N., Solvent Extr. Ion Exch., 2002, vol. 20, pp. 429–445.

    Article  CAS  Google Scholar 

  9. Ossola, A., Macerata, E., Tinonin, D.A., Faroldi, F., Giola, M., Mariani, M., and Casnati, A., Radiat. Phys. Chem., 2016, vol. 124, pp. 246–251.

    Article  CAS  Google Scholar 

  10. Ruiqin, L, Yuezhou, W, Tozawa, D, Yuanlai, X, Usuda, S, Yamazaki, H, Ishii, K., Sano, Y., and Koma, Y., Nucl. Sci. Technol., 2011, vol. 22, pp. 18–24.

    Google Scholar 

  11. Attallah, M.F., Borai, E.H., and Allan, K.F., Radiochemistry, 2009, vol. 51, no. 6, pp. 622–627.

    Article  CAS  Google Scholar 

  12. El-Khouly, S.H., Attallah, M.F., and Allan, K.F., Radiochemistry, 2013, vol. 55, no. 5, pp. 486–491.

    Article  CAS  Google Scholar 

  13. El Afifi, E.M., Attallah, M.F., and Borai, E.H., J. Environ. Radioact., 2016, vol. 151, part 1, pp. 156–165.

    Article  CAS  Google Scholar 

  14. Allan, K.F., El Afifi, E.M., and Holial, M., Particulate Sci. Technol., 2017, vol. 35, no. 2, pp. 127–138.

    Article  CAS  Google Scholar 

  15. Khalil, M., El-Aryan, Y.F., and El Afifi, E.M., Particulate Sci. Technol., 2017, vol. 36, no. 5, pp. 618–627. https://doi.org/10.1080/02726351.2017.1287141

    Article  CAS  Google Scholar 

  16. Naushad, Mu., Mitra, R., and Raghuvanshi, J., Ion Exchange Lett., 2009, vol. 2, pp. 31–34.

    CAS  Google Scholar 

  17. Carter, H., Uranium separation using extraction chromatography, PhD Thesis, Loughborough Univ. (the United States), 2000, pp. 22–26.

    Google Scholar 

  18. Borai, E.H., Hilal, M.A., Attallah, M.F., and Shehata, F.A., Radiochim. Acta, 2008, vol. 96, pp. 441–447.

    Article  CAS  Google Scholar 

  19. Nilchi, A., Atashi, H., Javid, A.H., and Saberi, R., Appl. Radiat. Isot., 2007, vol. 65, pp. 482–487.

    Article  CAS  Google Scholar 

  20. Someda, H.H., Ezz El-Din, M.R., Sheha, R.R., and El Naggar, H.A., J. Radioanal. Nucl. Chem., 2002, vol. 254, no. 2, pp. 373–378.

    Article  CAS  Google Scholar 

  21. Sheha, R.R. and Someda, H.H., New Research on Hazardous Materials, Warey, P.B., Ed., New York: Nova Science, 2007, ch. 1, pp. 1–73.

    Google Scholar 

  22. Shannon, D., Acta Crystallogr., Sect. A, 1976, vol. 32, pp. 751–767.

    Article  Google Scholar 

  23. Persson, I., Pure Appl. Chem., 2010, vol. 82, no. 10, pp. 1901–1917.

    Article  CAS  Google Scholar 

  24. Saeed, M.M., J. Radioanal. Nucl. Chem., 2003, vol. 256, no. 1, pp. 73–80.

    Article  CAS  Google Scholar 

  25. El-Said, H., J. Chem., 2012, Art. ID756876. https://doi.org/10.1155/2013/756876

  26. Afsar, A., Distler, P., Harwood, L.M., John, J., and Westwood, J., Chem. Commun., 2017, vol. 53, pp. 4010–4013.

    Article  CAS  Google Scholar 

  27. Popova, N.N., Zhilov, V.I., Demin, S.V., Tsivadze, A.Y., Yakshin, V.V., and Vilkova, O.M., Russ. J. Inorg. Chem., 2011, vol. 56, no. 7, pp. 1128–1132.

    Article  CAS  Google Scholar 

  28. Saipriya, G., Kumaresan, R., Nayak, P.K., Venkatesan, K.A., Antony, M.P., and Kumar, T., J. Radioanal. Nucl. Chem., 2017, vol. 314, no. 3, pp. 2557–2568.

    Article  CAS  Google Scholar 

  29. Larkin, P.J., in Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, Amsterdam: Elsevier, 2012.

    Google Scholar 

  30. Segneanu, A.E., Gozescu, I., Dabici, A., Sfirloaga, P., and Szabadai, Z., Macro to Nano Spectroscopy, Uddin, J., Ed., InTech, 2012. http://www.intechopen.com/books/macro-to-nano-spectroscopy/organiccompounds-ft-ir-spectroscopy

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Attallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attallah, M.F., Afifi, E.M.E. & Shehata, F.A. Performance of Some Ion-Exchange Resins in Removal of 241Am(III), 152+154Eu(III), 99Mo(VI), 137Cs(I), and 60Co(II) from Simulated Nuclear Acidic Solutions. Radiochemistry 62, 681–688 (2020). https://doi.org/10.1134/S1066362220050161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362220050161

Keywords:

Navigation