Skip to main content
Log in

Mechanism of UO2(NO3)2·6H2O decomposition under the action of microwave radiation

  • Published:
Radiochemistry Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of microwave radiation (MWR) on the decomposition of UO2(NO3)2·6H2O was studied. Determination of [UO 2+2 ] and [NO 3 ], and also of the molar ratio NO 3 : UO 2+2 in various fractions of the decomposition product showed that the mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR differs from the mechanism of its decomposition under common convection heating. The main precursor of UO3 as product of UO2(NO3)2·6H2O decomposition under the action of MWR is uranyl hydroxonitrate UO2(OH)NO3 formed already in the first minutes of the irradiation. In contrast to the thermolysis under convection heating, UO2(NO3)2 or its hydrates were not detected as intermediates. The mechanism of the UO2(NO3)2·6H2O decomposition under the action of MWR can be presented by the reactions UO2(NO3)2·6H2O → UO2(OH)NO3 + 5H2O + HNO3 and UO2(OH)NO3 → UO3 + HNO3. The solubility of UO2(OH)NO3 in H2O at 20°C was estimated experimentally at 6.83 × 10−2 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arzhannikov, A.V., Akhmetov, T.D., Kalinin, P.V., et al., A Rig for Strudying UHF Heating and Transformations of Substances, Preprint of the Budker Inst. of Nuclear Physics, Siberian Branch, Russian Acad. Sci., no. IYaF 2004-2.

  2. Vanetsev, A.S. and Tret’yakov, Yu.D., Usp. Khim., 2007, vol. 76, no. 5, pp. 435–453.

    Google Scholar 

  3. Tret’yakov, Yu.D., Usp. Khim., 2004, vol. 73, no. 9, pp. 899–916.

    Google Scholar 

  4. Vanetsev, A.S., Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2004.

    Google Scholar 

  5. Haque, K.E., Int. J. Miner. Process., 1999, vol. 57, pp. 1–24.

    Article  CAS  Google Scholar 

  6. Vanetsev, A.S., Ivanov, V.K., and Tret’yakov, Yu.D., Dokl. Ross. Akad. Nauk, 2002, vol. 387, no. 5, pp. 640–642.

    Google Scholar 

  7. Zaitsev, D.D., Kazin, P.E., Vanetsev, A.S., et al., Dokl. Ross. Akad. Nauk, 2005, vol. 402, no. 1, pp. 49–51.

    Google Scholar 

  8. Komarov, V.I., Molokhov, M.N., Kharitonov, K.A., et al., At. Energ., 2005, vol. 98, no. 4, pp. 288–293.

    Google Scholar 

  9. Ohtsuka, K., Ohuchi, J., and Takanashi, Y., US Patent 4 364 859, December 21, 1982.

  10. Akiyama, H., Todokoro, A., and Takanobu, O., US Patent 4 563 355, January 7, 1986.

  11. Hayano, N., Kawato, Y., Arishige, T., et al., US Patent 4 727 231, February 23, 1988.

  12. Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., et al., J. Nucl. Mater., 1998, vol. 254, pp. 55–64.

    Article  CAS  Google Scholar 

  13. Iikura, T., Toyohara, M., and Nakakuki, I., in Advanced Technologies from Toshiba. Nuclear Energy Systems and Services, Tokyo: Toshiba, 2008, pp. 40–47.

    Google Scholar 

  14. Haas, P.A., Am. Ceram. Bull., 1979, vol. 58, no. 9, p. 873.

    CAS  Google Scholar 

  15. Ondrejcin, R.S. and Garret, T.P., J. Phys. Chem., 1961, vol. 65, pp. 470–473.

    Article  CAS  Google Scholar 

  16. Katz, J.J. and Rabinowitch, E., The Chemistry of Uranium, New York: McGraw-Hill, 1951.

    Google Scholar 

  17. Lister, A.J. and Richardson, R.J., The Preparation of Uranium Trioxide by Thermal Decomposition of Uranyl Nitrate, Harwell: Atomic Energy Research Establishment, 1954, AERE C/R 1874.

    Google Scholar 

  18. Galkin, N.P., Sudarikov, B.N., Veryatin, U.D., et al., Tekhnologiya urana (Uranium Technology), Moscow: Atomizdat, 1964.

    Google Scholar 

  19. Schaal, G. and Faron, R., US Patent 5 628 048, May 6, 1997.

  20. Cordfunka, E.H.P., J. Inorg. Nucl. Chem., 1972, vol. 34, pp. 531–534.

    Article  Google Scholar 

  21. Perrin, A., Acta Crystallogr., Sect. B, 1976, vol. 32, pp. 1658–1661.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Kulyukhin, A.N. Kamenskaya, V.A. Lavrikov, 2009, published in Radiokhimiya, 2009, Vol. 51, No. 3, pp. 228–233.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulyukhin, S.A., Kamenskaya, A.N. & Lavrikov, V.A. Mechanism of UO2(NO3)2·6H2O decomposition under the action of microwave radiation. Radiochemistry 51, 262–268 (2009). https://doi.org/10.1134/S1066362209030084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362209030084

PACS numbers

Navigation