Skip to main content
Log in

On Second-Order Parabolic and Hyperbolic Perturbations of a First-Order Hyperbolic System

  • MATHEMATICS
  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

We study the Cauchy problems for a first-order symmetric hyperbolic system of equations with variable coefficients and its singular perturbations that are second-order strongly parabolic and hyperbolic systems of equations with a small parameter \(\tau > 0\) in front of the second derivatives with respect to \(x\) and t. The properties of solutions of all three systems are formulated, and estimates of order \(O({{\tau }^{{\alpha /2}}})\) are given for the difference between the solutions of the original system and systems with perturbations for an initial function w0 of smoothness α in the sense of \({{L}^{2}}({{\mathbb{R}}^{n}})\), \(0 < \alpha \leqslant 2\). For \(\alpha = 1{\text{/}}2\), a broad class of discontinuous functions w0 is covered. Applications to the linearized system of gas dynamics equations and to the linearized parabolic and hyperbolic second-order quasi-gasdynamic systems of equations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (MAKS Press, Moscow, 2004; CIMNE, Barcelona, 2008).

  2. T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer, Berlin, 2009).

  3. B. N. Chetverushkin, Math. Models Comput. Simul. 10 (5), 588–600 (2018).

    Article  MathSciNet  Google Scholar 

  4. H. Fattorini, J. Differ. Equations 70, 1–41 (1987).

    Article  Google Scholar 

  5. E. M. De Jager and J. Furu, The Theory of Singular Perturbations (Elsevier, Amsterdam, 1996).

    Google Scholar 

  6. L. C. Evans, Partial Differential Equations (Am. Math. Soc., Providence, R.I., 1998).

    MATH  Google Scholar 

  7. S. Mizohata, The Theory of Partial Differential Equations (Cambridge Univ. Press, Cambridge, 1973).

    MATH  Google Scholar 

  8. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’-tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; Am. Math. Soc., Providence, R.I., 1968).

  9. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer-Verlag, New York, 1985).

  10. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974).

    MATH  Google Scholar 

  11. A. A. Zlotnik and B. N. Chetverushkin, Comput. Math. Math. Phys. 48 (3), 420–446 (2008).

    Article  MathSciNet  Google Scholar 

  12. A. A. Zlotnik and B. N. Chetverushkin, Differ. Equations 56 (7), 910–922 (2020).

    Article  MathSciNet  Google Scholar 

  13. J. Bergh and J. Löfström, Interpolation Spaces: An Introduction (Springer-Verlag, Heidelberg, 1976).

    Book  MATH  Google Scholar 

  14. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces (Springer, Berlin, 2007).

    MATH  Google Scholar 

  15. S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems (Nauka, Moscow, 1969; Springer-Verlag, New York, 1975).

  16. A. A. Zlotnik and A. S. Fedchenko, Dokl. Math. 104 (3), 340–346 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-00126.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Zlotnik or B. N. Chetverushkin.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlotnik, A.A., Chetverushkin, B.N. On Second-Order Parabolic and Hyperbolic Perturbations of a First-Order Hyperbolic System. Dokl. Math. 106, 308–314 (2022). https://doi.org/10.1134/S1064562422050210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562422050210

Keywords:

Navigation